$125$ विद्यार्थियों की एक कक्षा में $70$ गणित में, $55$ सांख्यिकी में एवं $30$ दोनों में उत्तीर्ण होते हैं। कक्षा में एक विद्याथि के चुनने पर इसके केवल एक विषय में उत्तीर्ण होने की प्रायिकता होगी
$\frac{{13}}{{25}}$
$\frac{3}{{25}}$
$\frac{{17}}{{25}}$
$\frac{8}{{25}}$
यदि $P\,(A) = 0.4,\,\,P\,(B) = x,\,\,P\,(A \cup B) = 0.7$ और घटनाएँ $A$ तथा $B$ परस्पर अपवर्जी हों, तो $x = $
एक संस्था के कर्मचारियों में से $5$ कर्मचारियों का चयन प्रबंध समिति के लिए किया गया है। पाँच कर्मचारियों का ब्योरा निम्नलिखित है
क्रम. | नाम | लिंग | आयु ( वर्षो में ) |
$1.$ | हरीश | $M$ | $30$ |
$2.$ | रोहन | $M$ | $33$ |
$3.$ | शीतल | $F$ | $46$ |
$4.$ | ऐलिस | $F$ | $28$ |
$5.$ | सलीम | $M$ | $41$ |
इस समूह से प्रवक्ता पद के लिए यादृच्छ्या एक व्यक्ति का चयन किया गया। प्रवक्ता के पुरुष या $35$ वर्ष से अधिक आयु का होने की क्या प्रायिकता है ?
भौतिक शास्त्र में फेल होने की संभावना $20\%$ तथा गणित में फेल होने की संभावना $10\%$ है। कम से कम एक विषय में फेल होने की संभावना ............. $\%$ है
तीन व्यक्ति $P, Q$ तथा $R$ स्वतंत्र रूप से एक निशाने को भेदने का प्रयास करते हैं। यदि उनके निशाने को भेद पाने की प्रायिकताएं क्रमशः $\frac{3}{4}, \frac{1}{2}$ तथा $\frac{5}{8}$ हैं, तो $P$ अथवा $Q$ के निशाना भेद पाने परन्तु $R$ के निशाना न भेद पाने की प्रायिकता है
एक पाठशाला की कक्षा $XI$ के $40 \%$ विद्यार्थी गणित पढते हैं और $30 \%$ जीव विज्ञान पढते हैं। कक्षा के $10 \%$ विद्यार्थी गणित और जीव विज्ञान दोनों पढते हैं। यदि कक्षा का एक विद्यार्थी यादृच्छया चुना जाता है , तो प्रायिकता ज्ञात कीजिए कि वह गणित या जीव विज्ञान पढ़ता होगा।