एक पाठशाला की कक्षा $XI$ के $40 \%$ विद्यार्थी गणित पढते हैं और $30 \%$ जीव विज्ञान पढते हैं। कक्षा के $10 \%$ विद्यार्थी गणित और जीव विज्ञान दोनों पढते हैं। यदि कक्षा का एक विद्यार्थी यादृच्छया चुना जाता है , तो प्रायिकता ज्ञात कीजिए कि वह गणित या जीव विज्ञान पढ़ता होगा।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $A$ be the event in which the selected student studies Mathematics and $B$ be the event in which the selected student studies Biology.

Accordingly, $P ( A )=40 \%=\frac{40}{100}=\frac{2}{5}$

$P(B)=30 \%=\frac{30}{100}=\frac{3}{10}$

$P ( A$ and $B )=10 \%=\frac{10}{100}=\frac{1}{10}$

We know that $P ( A$ and $B )= P ( A )+ P ( B )- P ( A $ and $B )$

$\therefore P(A $ or $ B)=\frac{2}{5}+\frac{3}{10}+\frac{1}{10}=\frac{6}{10}=0.6$

Thus, the probability that the selected student will be studying Mathematics or Biology is $0.6$.

Similar Questions

यदि $A$ तथा $B$ दो ऐसी घटनाएँ हों कि $P\,(A \cup B)\, + P\,(A \cap B) = \frac{7}{8}$ तथा $P\,(A) = 2\,P\,(B),$ तो $P\,(A) = $

ताश के $52$ पत्तों की एक सुमिश्रित गड्डी से एक पत्ता यादृच्छया निकाला जाता है। निम्नलिखित में से किन दशाओं में घटनाएँ $E$ और $F$ स्वतंत्र हैं?

$E :$ 'निकाला गया पत्ता हुकुम का है

$F :$ 'निकाला गया पत्ता इक्का है'

एक घुड़-दौड़ में तीन घोड़ों के अनुकूल संयोगानुपात $1:2 ,  1:3$ व $1:4$ हैं, तो किसी एक घोड़े के द्वारा दौड़ जीते जाने की प्रायिकता है

माना $A$ तथा $B$ दो घटनायें है तथा $P(A') = 0.3$, $P(B) = 0.4,\,P(A \cap B') = 0.5$ तब $P(A \cup B') =$

यदि $E$ और $F$ घटनाएँ इस प्रकार हैं कि $P ( E )=\frac{1}{4}, P ( F )=\frac{1}{2}$ और $P ( E$ और $F )=\frac{1}{8},$ तो ज्ञात कीजिए $P ( E$ या $F )$