In a cubic equation coefficient of $x^2$ is zero and remaining coefficient are real has one root $\alpha = 3 + 4\, i$ and remaining roots are $\beta$ and $\gamma$ then $\alpha \beta \gamma$ is :-
$150$
$-150$
$25$
None of these
Suppose $m, n$ are positive integers such that $6^m+2^{m+n} \cdot 3^w+2^n=332$. The value of the expression $m^2+m n+n^2$ is
Let $x$ and $y$ be two $2-$digit numbers such that $y$ is obtained by reversing the digits of $x$. Suppose they also satisfy $x^2-y^2=m^2$ for some positive integer $m$. The value of $x+y+m$ is
If the graph of $y = ax^3 + bx^2 + cx + d$ is symmetric about the line $x = k$ then
Let $a, b, c, d$ be real numbers between $-5$ and $5$ such that $|a|=\sqrt{4-\sqrt{5-a}},|b|=\sqrt{4+\sqrt{5-b}},|c|=\sqrt{4-\sqrt{5+c}}$ $|d|=\sqrt{4+\sqrt{5+d}}$ Then, the product $a b c d$ is
Let $p, q$ and $r$ be real numbers $(p \ne q,r \ne 0),$ such that the roots of the equation $\frac{1}{{x + p}} + \frac{1}{{x + q}} = \frac{1}{r}$ are equal in magnitude but opposite in sign, then the sum of squares of these roots is equal to .