- Home
- Standard 11
- Mathematics
4-2.Quadratic Equations and Inequations
medium
For a real number $x$, let $[x]$ denote the largest integer less than or equal to $x$, and let $\{x\}=x-[x]$. The number of solutions $x$ to the equation $[x]\{x\}=5$ with $0 \leq x \leq 2015$ is
A
$0$
B
$3$
C
$2008$
D
$2009$
(KVPY-2015)
Solution
(d)
We have,
$\quad[x]\{x\}=5$
$x \in[0,2015]$
$\{x\}=\frac{5}{[x]}$
$\{x\} \in[0,1)$
$\frac{5}{[x]} < 1$
${[x] > 5 }$
$\therefore$ Total number of solution is $2009.$
Standard 11
Mathematics