For a real number $x$, let $[x]$ denote the largest integer less than or equal to $x$, and let $\{x\}=x-[x]$. The number of solutions $x$ to the equation $[x]\{x\}=5$ with $0 \leq x \leq 2015$ is

  • [KVPY 2015]
  • A

    $0$

  • B

    $3$

  • C

    $2008$

  • D

    $2009$

Similar Questions

If $\alpha ,\,\beta ,\,\gamma $ are the roots of the equation ${x^3} + 4x + 1 = 0,$ then ${(\alpha + \beta )^{ - 1}} + {(\beta + \gamma )^{ - 1}} + {(\gamma + \alpha )^{ - 1}} = $

If $x+\frac{1}{x}=a, x^2+\frac{1}{x^3}=b$, then $x^3+\frac{1}{x^2}$ is

  • [KVPY 2011]

Let $a, b, c, d$ be real numbers such that $|a-b|=2$, $|b-c|=3,|c-d|=4$. Then, the sum of all possible values of $|a-d|$ is

  • [KVPY 2011]

If $\alpha ,\beta $are the roots of ${x^2} - ax + b = 0$ and if ${\alpha ^n} + {\beta ^n} = {V_n}$, then

If $\alpha , \beta $ are the roots of the equation $x^2 - 2x + 4 = 0$ , then the value of $\alpha ^n +\beta ^n$ is