14.Probability
hard

In a game, a man wins $Rs.\,100$  if he gets $5$ or $6$ on a throw of a fair die and loses $Rs.\,50$ for getting any other number on the die. If he decides to throw the die either till he gets a five or a six or to a maximum of three throws, then his expected gain/loss (in rupees) is

A

$\frac{{400}}{9}\,loss$

B

$0$

C

$\frac{{400}}{3}\,gain$

D

$\frac{{400}}{3}\,loss$

(JEE MAIN-2019)

Solution

Let $w$ denotes probability that outcome $5$ or $6\left(w=\frac{2}{6}=\frac{1}{3}\right)$

Let, $L$ denotes probability that outcome $1,2,3,4\left(L=\frac{4}{6}=\frac{2}{3}\right)$

Expected Gain/Loss

$=\mathrm{w} \times 100+\mathrm{Lw}(-50+100)+\mathrm{L}^{2} \mathrm{w}(-50-50+100)+\mathrm{L}^{3}(-150)$

$=\frac{1}{3} \times 100+\frac{2}{3} \cdot \frac{1}{3}(50)+\left(\frac{2}{3}\right)^{2}\left(\frac{1}{3}\right)(0)+\left(\frac{2}{3}\right)^{3}(-150)=0$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.