In a group of $65$ people, $40$ like cricket, $10$ like both cricket and tennis. How many like tennis only and not cricket? How many like tennis?
Let $C$ denote the set of people who like cricket, and $T$ denote the set of people who like tennis
$\therefore n(C \cup T)=65, n(C)=40, n(C \cap T)=10$
We know that:
$n(C \cup T)=n(C)+n(T)-n(C \cap T)$
$\therefore 65=40+n(T)-10$
$\Rightarrow 65=30+n(T)$
$\Rightarrow n(T)=65-30=35$
Therefore, $35$ people like tennis.
Now,
$(T-C) \cup(T \cap C)=T$
Also.
$(T-C) \cap(T \cap C)=\varnothing$
$\therefore n(T)=n(T-C)+n(T \cap C)$
$\Rightarrow 35=n(T-C)+10 $
$\Rightarrow n(T-C)=35-10=25$
Thus, $25$ people like only tennis.
An organization awarded $48$ medals in event '$A$',$25$ in event '$B$ ' and $18$ in event ' $C$ '. If these medals went to total $60$ men and only five men got medals in all the three events, then, how many received medals in exactly two of three events?
Out of $800$ boys in a school, $224$ played cricket, $240$ played hockey and $336$ played basketball. Of the total, $64$ played both basketball and hockey; $80$ played cricket and basketball and $40$ played cricket and hockey; $24$ played all the three games. The number of boys who did not play any game is
In a survey of $60$ people, it was found that $25$ people read newspaper $H , 26$ read newspaper $T, 26$ read newspaper $I, 9$ read both $H$ and $I, 11$ read both $H$ and $T,$ $8$ read both $T$ and $1,3$ read all three newspapers. Find:
the number of people who read exactly one newspaper.
In a school there are $20$ teachers who teach mathematics or physics. Of these, $12$ teach mathematics and $4$ teach both physics and mathematics. How many teach physics ?
In a survey of $60$ people, it was found that $25$ people read newspaper $H , 26$ read newspaper $T, 26$ read newspaper $I, 9$ read both $H$ and $I, 11$ read both $H$ and $T,$ $8$ read both $T$ and $1,3$ read all three newspapers. Find:
the number of people who read at least one of the newspapers.