In a group of $65$ people, $40$ like cricket, $10$ like both cricket and tennis. How many like tennis only and not cricket? How many like tennis?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $C$ denote the set of people who like cricket, and $T$ denote the set of people who like tennis

$\therefore n(C \cup T)=65, n(C)=40, n(C \cap T)=10$

We know that:

$n(C \cup T)=n(C)+n(T)-n(C \cap T)$

$\therefore 65=40+n(T)-10$

$\Rightarrow 65=30+n(T)$

$\Rightarrow n(T)=65-30=35$

Therefore, $35$ people like tennis.

Now,

$(T-C) \cup(T \cap C)=T$

Also.

$(T-C) \cap(T \cap C)=\varnothing$

$\therefore n(T)=n(T-C)+n(T \cap C)$

$\Rightarrow 35=n(T-C)+10 $

$\Rightarrow n(T-C)=35-10=25$

Thus, $25$ people like only tennis.

Similar Questions

$20$ teachers of a school either teach mathematics or physics. $12$ of them teach mathematics while $4$ teach both the subjects. Then the number of teachers teaching physics is

A college awarded $38$ medals in football, $15$ in basketball and $20$ in cricket. If these medals went to a total of $58$ men and only three men got medals in all the three sports, how many received medals in exactly two of the three sports?

There are $200$ individuals with a skin disorder, $120$ had been exposed to the chemical $C _{1}, 50$ to chemical $C _{2},$ and $30$ to both the chemicals $C _{1}$ and $C _{2} .$ Find the number of individuals exposed to

Chemical $C _{1}$ but not chemical $C _{2}$

In a school there are $20$ teachers who teach mathematics or physics. Of these, $12$ teach mathematics and $4$ teach both physics and mathematics. How many teach physics ?

Let $X = \{ $ Ram ,Geeta, Akbar $\} $ be the set of students of Class $\mathrm{XI}$, who are in school hockey team. Let $Y = \{ {\rm{ }}$ Geeta, David, Ashok $\} $ be the set of students from Class $\mathrm{XI}$ who are in the school football team. Find $X \cup Y$ and interpret the set.