In a group of $65$ people, $40$ like cricket, $10$ like both cricket and tennis. How many like tennis only and not cricket? How many like tennis?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $C$ denote the set of people who like cricket, and $T$ denote the set of people who like tennis

$\therefore n(C \cup T)=65, n(C)=40, n(C \cap T)=10$

We know that:

$n(C \cup T)=n(C)+n(T)-n(C \cap T)$

$\therefore 65=40+n(T)-10$

$\Rightarrow 65=30+n(T)$

$\Rightarrow n(T)=65-30=35$

Therefore, $35$ people like tennis.

Now,

$(T-C) \cup(T \cap C)=T$

Also.

$(T-C) \cap(T \cap C)=\varnothing$

$\therefore n(T)=n(T-C)+n(T \cap C)$

$\Rightarrow 35=n(T-C)+10 $

$\Rightarrow n(T-C)=35-10=25$

Thus, $25$ people like only tennis.

Similar Questions

There are $200$ individuals with a skin disorder, $120$ had been exposed to the chemical $C _{1}, 50$ to chemical $C _{2},$ and $30$ to both the chemicals $C _{1}$ and $C _{2} .$ Find the number of individuals exposed to

Chemical $C_{2}$ but not chemical $C_{1}$

In a group of $70$ people, $37$ like coffee, $52$ like tea and each person likes at least one of the two drinks. How many people like both coffee and tea?

In a town of $10,000$ families it was found that $40\%$ family buy newspaper $A, 20\%$ buy newspaper $B$ and $10\%$ families buy newspaper $C, 5\%$ families buy $A$ and $B, 3\%$ buy $B$ and $C$ and $4\%$ buy $A$ and $C$. If $2\%$ families buy all the three newspapers, then number of families which buy $A$ only is

There are $200$ individuals with a skin disorder, $120$ had been exposed to the chemical $C _{1}, 50$ to chemical $C _{2},$ and $30$ to both the chemicals $C _{1}$ and $C _{2} .$ Find the number of individuals exposed to

Chemical $C_{1}$ or chemical $C_{2}$

In a class of $55$ students, the number of students studying different subjects are $23$ in Mathematics, $24$ in Physics, $19$ in Chemistry, $12$ in Mathematics and Physics, $9$ in Mathematics and Chemistry, $7$ in Physics and Chemistry and $4$ in all the three subjects. The total numbers of students who have taken exactly one subject is