In a class of $35$ students, $24$ like to play cricket and $16$ like to play football. Also, each student likes to play at least one of the two games. How many students like to play both cricket and football?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $X$ be the set of students who like to play cricket and $Y$ be the set of students who like to play football. Then $X \cup Y$ is the set of students who like to play at least one game, and $X \cap Y$ is the set of students who like to play both games.

Given $\quad n( X )=24, n( Y )=16, n( X \cup Y )=35, n( X \cap Y )=?$

Using the formula $n( X \cup Y )=n( X )+n( Y )-n( X \cap Y ),$ we get

$35=24+16-n( X \cap Y )$

Thus, $n( X \cap Y )=5$

i.e., $\quad 5$ students like to play both games.

Similar Questions

In a town of $10,000$ families it was found that $40\%$ family buy newspaper $A, 20\%$ buy newspaper $B$ and $10\%$ families buy newspaper $C, 5\%$ families buy $A$ and $B, 3\%$ buy $B$ and $C$ and $4\%$ buy $A$ and $C$. If $2\%$ families buy all the three newspapers, then number of families which buy $A$ only is

A survey shows that $73 \%$ of the persons working in an office like coffee, whereas $65 \%$ like tea. If $x$ denotes the percentage of them, who like both coffee and tea, then $x$ cannot be

  • [JEE MAIN 2020]

In a survey of $400$ students in a school, $100$ were listed as taking apple juice, $150$ as taking orange juice and $75$ were listed as taking both apple as well as orange juice. Find how many students were taking neither apple juice nor orange juice.

In a class of $140$ students numbered $1$ to $140$, all even numbered students opted Mathematics course, those whose number is divisible by $3$ opted Physics course and those whose number is divisible by $5$ opted Chemistry course. Then the number of students who did not opt for any of the three courses is

  • [JEE MAIN 2019]

Let $\mathrm{U}$ be the set of all triangles in a plane. If $\mathrm{A}$ is the set of all triangles with at least one angle different from $60^{\circ},$ what is $\mathrm{A} ^{\prime} ?$