In a class of $35$ students, $24$ like to play cricket and $16$ like to play football. Also, each student likes to play at least one of the two games. How many students like to play both cricket and football?
Let $X$ be the set of students who like to play cricket and $Y$ be the set of students who like to play football. Then $X \cup Y$ is the set of students who like to play at least one game, and $X \cap Y$ is the set of students who like to play both games.
Given $\quad n( X )=24, n( Y )=16, n( X \cup Y )=35, n( X \cap Y )=?$
Using the formula $n( X \cup Y )=n( X )+n( Y )-n( X \cap Y ),$ we get
$35=24+16-n( X \cap Y )$
Thus, $n( X \cap Y )=5$
i.e., $\quad 5$ students like to play both games.
In a survey of $600$ students in a school, $150$ students were found to be taking tea and $225$ taking coffee, $100$ were taking both tea and coffee. Find how many students were taking neither tea nor coffee?
In a class of $100$ students,$15$ students chose only physics (but not mathematics and chemistry),$3$ chose only chemistry (but not mathematics and physics), and $45$ chose only mathematics(but not physics and chemistry). Of the remaining students, it is found that $23$ have taken physics and chemistry,$20$ have taken physics and mathematics, and $12$ have taken mathematics and chemistry. The number of student who chose all the three subjects is
In a survey of $220$ students of a higher secondary school, it was found that at least $125$ and at most $130$ students studied Mathematics; at least $85$ and at most $95$ studied Physics; at least $75$ and at most $90$ studied Chemistry; $30$ studied both Physics and Chemistry; $50$ studied both Chemistry and Mathematics; $40$ studied both Mathematics and Physics and $10$ studied none of these subjects. Let $\mathrm{m}$ and $\mathrm{n}$ respectively be the least and the most number of students who studied all the three subjects. Then $\mathrm{m}+\mathrm{n}$ is equal to .............................
A survey shows that $63\%$ of the Americans like cheese whereas $76\%$ like apples. If $x\%$ of the Americans like both cheese and apples, then
Out of $500$ car owners investigated, $400$ owned car $\mathrm{A}$ and $200$ owned car $\mathrm{B} , 50$ owned both $\mathrm{A}$ and $\mathrm{B}$ cars. Is this data correct?