$65$ व्यक्तियों के समूह में, $40$ व्यक्ति क्रिकेट, और $10$ व्यक्ति क्रिकेट तथा टेनिस दोनों को पसंद करते हैं, तो कितने व्यक्ति केवल टेनिस को पसंद करते हैं किंतु क्रिकेट को नहीं? कितने व्यक्ति टेनिस को पसंद करते हैं ?
Let $C$ denote the set of people who like cricket, and $T$ denote the set of people who like tennis
$\therefore n(C \cup T)=65, n(C)=40, n(C \cap T)=10$
We know that:
$n(C \cup T)=n(C)+n(T)-n(C \cap T)$
$\therefore 65=40+n(T)-10$
$\Rightarrow 65=30+n(T)$
$\Rightarrow n(T)=65-30=35$
Therefore, $35$ people like tennis.
Now,
$(T-C) \cup(T \cap C)=T$
Also.
$(T-C) \cap(T \cap C)=\varnothing$
$\therefore n(T)=n(T-C)+n(T \cap C)$
$\Rightarrow 35=n(T-C)+10 $
$\Rightarrow n(T-C)=35-10=25$
Thus, $25$ people like only tennis.
$60$ लोगों के सर्वेक्षण में पाया गया कि $25$ लोग समाचार पत्र $H , 26$ लोग समाचार पत्र $T, 26$ लोग समाचार पत्र $I, 9$ लोग $H$ तथा $I$ दोनों, $11$ लोग $H$ तथा $T$ दोनों $8$ लोग $T$ तथा $I$ दोनों और $3$ लोग तीनों ही समाचार पत्र पढते हैं, तो निम्नलिखित ज्ञात कीजिए
ठीक-ठीक केवल एक समाचार पत्र पढ़ने वालों की संख्या।
एक बाजार अनुसंधान समूह ने $1000$ उपभोक्ताओं का सर्वेक्षण किया और सूचित किया कि $720$ उपभोक्ताओं ने उत्पाद $A$ तथा $450$ उपभोक्ताओं ने उत्पाद $B$ पसंद् किया। दोनों उत्पादों को पसंद करने वाले उपभोक्ताओं की न्यूनतम संख्या क्या है ?
एक शहर में दो समाचार पत्र $A$ तथा $B$ प्रकाशित होते हैं। यह ज्ञात है कि शहर की $25 \%$ जनसंख्या $A$ पढ़ती है तथा $20 \% B$ पढ़ती है। जब कि $8 \% A$ तथा $B$ दोनों को पढ़ती है। इसके अतिरिक्त, $A$ पढ़ने तथा $B$ न पढ़ने वालों में $30 \%$ विज्ञापन देखते हैं और $B$ पढ़ने तथा $A$ न पढ़ने वालों में भी $40 \%$ विज्ञापन देखते हैं, जब कि $A$ तथा $B$ दोनों को पढ़ने वालों में से $50 \%$ विज्ञापन देखते है। तो जनसंख्या में विज्ञाप न देखने वालों का प्रतिशत हैं
विद्यार्थियों के एक समूह में, $100$ विद्यार्थी हिंदी, $50$ विद्यार्थी अंग्रेज़ी तथा $25$ विद्यार्थी दोनों भाषाओं को जानते हैं। विद्यार्थियों में से प्रत्येक या तो हिंदी या अंग्रेज़ी जानता है। समूह में कुल कितने विद्यार्थी हैं ?
एक कमेटी में, $50$ व्यक्ति फ़्रेंच, $20$ व्यक्ति स्पेनिश और $10$ व्यक्ति स्पेनिश और फ्रेंच दोनों ही भाषाओं को बोल सकते हैं। कितने व्यक्ति इन दोनों ही भाषाओं में से कम से कम एक भाषा बोल सकते हैं ?