- Home
- Standard 11
- Mathematics
1.Set Theory
medium
$65$ व्यक्तियों के समूह में, $40$ व्यक्ति क्रिकेट, और $10$ व्यक्ति क्रिकेट तथा टेनिस दोनों को पसंद करते हैं, तो कितने व्यक्ति केवल टेनिस को पसंद करते हैं किंतु क्रिकेट को नहीं? कितने व्यक्ति टेनिस को पसंद करते हैं ?
A
$25$
B
$25$
C
$25$
D
$25$
Solution
Let $C$ denote the set of people who like cricket, and $T$ denote the set of people who like tennis
$\therefore n(C \cup T)=65, n(C)=40, n(C \cap T)=10$
We know that:
$n(C \cup T)=n(C)+n(T)-n(C \cap T)$
$\therefore 65=40+n(T)-10$
$\Rightarrow 65=30+n(T)$
$\Rightarrow n(T)=65-30=35$
Therefore, $35$ people like tennis.
Now,
$(T-C) \cup(T \cap C)=T$
Also.
$(T-C) \cap(T \cap C)=\varnothing$
$\therefore n(T)=n(T-C)+n(T \cap C)$
$\Rightarrow 35=n(T-C)+10 $
$\Rightarrow n(T-C)=35-10=25$
Thus, $25$ people like only tennis.
Standard 11
Mathematics
Similar Questions
medium
easy