$65$ વ્યક્તિઓના જૂથમાં, $40$ ક્રિકેટ પસંદ કરે છે, $10$ ક્રિકેટ અને ટેનિસ બંને પસંદ કરે છે. કેટલી વ્યક્તિઓ માત્ર ટેનિસ પસંદ કરે છે પરંતુ ક્રિકેટ પસંદ કરતા નથી ? કેટલા ટેનિસ પસંદ કરે છે ? $65$ પૈકી દરેક વ્યક્તિ આ બે પૈકી ઓછામાં ઓછી એક રમત પસંદ કરે છે.
Let $C$ denote the set of people who like cricket, and $T$ denote the set of people who like tennis
$\therefore n(C \cup T)=65, n(C)=40, n(C \cap T)=10$
We know that:
$n(C \cup T)=n(C)+n(T)-n(C \cap T)$
$\therefore 65=40+n(T)-10$
$\Rightarrow 65=30+n(T)$
$\Rightarrow n(T)=65-30=35$
Therefore, $35$ people like tennis.
Now,
$(T-C) \cup(T \cap C)=T$
Also.
$(T-C) \cap(T \cap C)=\varnothing$
$\therefore n(T)=n(T-C)+n(T \cap C)$
$\Rightarrow 35=n(T-C)+10 $
$\Rightarrow n(T-C)=35-10=25$
Thus, $25$ people like only tennis.
$400$ વ્યક્તિઓના સમૂહમાં, $250$ હિન્દી બોલી શકે છે અને $200$ અંગ્રેજી બોલી શકે છે, તો કેટલી વ્યક્તિઓ હિન્દી અને અંગ્રેજી બંને બોલી શકે ? $400$ પૈકી દરેક વ્યક્તિ આ બે પૈકી ઓછામાં ઓછી એક ભાષા બોલી શકે છે.
એક શહેરમાં બે અખબારો $A$ અને $B$ પ્રકાશિત થયા. તે શહેરની $25\%$ વસ્તી $A$ અને $20\%$ વસ્તી $B$ વાંચે છે. જયારે $8\%$ વસ્તી $A$ અને $B$ બંને વચ્ચે છે તથા $30\%$ લોકો જેમણે $A$ વાંચ્યું પરંતુ $B$ ની જાહેરાતો પર ધ્યાન આપતા નથી અને $40\%$ લોકો જેમણે $B$ વાંચ્યું પરંતુ $A$ ની જાહેરાતો પર ધ્યાન આપતા નથી જયારે $50\%$ લોકો $A$ અને $B$ બંનેની જાહેરાતો તરફ ધ્યાન આપે છે. તો જાહેરાતો માં ધ્યાન આપતી વસ્તી ની ટકાવારી મેળવો.
એક બજાર-સંશોધન જૂથે $1000$ ઉપભોક્તાઓની મોજણી કરી અને શોધ્યું કે $720$ ગ્રાહકો ઉત્પાદન $\mathrm{A}$ પસંદ કરે છે અને $450$ ઉત્પાદન $\mathrm{B}$ પસંદ કરે છે. બંને ઉત્પાદન પસંદ કરનાર ઉપભોક્તાની ન્યૂનતમ સંખ્યા કેટલી હશે ?
એક વર્ગમાં $175$ વિર્ધાથી છે. જો $100$ વિર્ધાથી ગણિત ,$70$ વિર્ધાથી ભૈતિક વિજ્ઞાન ,$40$ વિર્ધાથી રસાયણ વિજ્ઞાન અને $30$ વિર્ધાથી ગણિત અને ભૈતિક વિજ્ઞાન , $28$ વિર્ધાથી ગણિત અને રસાયણ વિજ્ઞાન , $23$ વિર્ધાથી ભૈતિક વિજ્ઞાન અને રસાયણ વિજ્ઞાન , અને $18$ વિર્ધાથી બધાજ વિષય પસંદ કરે છે. તો માત્ર ગણિત વિષય પસંદ કરેલ વિર્ધાથીની સંખ્યા મેળવો.
વિદ્યાર્થીઓના એક જૂથમાં, $100$ વિદ્યાર્થીઓ હિન્દી જાણે છે, $50$ અંગ્રેજી જાણે છે અને $25$ બંને ભાષા જાણે છે. આ જૂથમાં કેટલા વિદ્યાર્થીઓ હશે ?