$65$ વ્યક્તિઓના જૂથમાં, $40$ ક્રિકેટ પસંદ કરે છે, $10$ ક્રિકેટ અને ટેનિસ બંને પસંદ કરે છે. કેટલી વ્યક્તિઓ માત્ર ટેનિસ પસંદ કરે છે પરંતુ ક્રિકેટ પસંદ કરતા નથી ? કેટલા ટેનિસ પસંદ કરે છે ? $65$ પૈકી દરેક વ્યક્તિ આ બે પૈકી ઓછામાં ઓછી એક રમત પસંદ કરે છે.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $C$ denote the set of people who like cricket, and $T$ denote the set of people who like tennis

$\therefore n(C \cup T)=65, n(C)=40, n(C \cap T)=10$

We know that:

$n(C \cup T)=n(C)+n(T)-n(C \cap T)$

$\therefore 65=40+n(T)-10$

$\Rightarrow 65=30+n(T)$

$\Rightarrow n(T)=65-30=35$

Therefore, $35$ people like tennis.

Now,

$(T-C) \cup(T \cap C)=T$

Also.

$(T-C) \cap(T \cap C)=\varnothing$

$\therefore n(T)=n(T-C)+n(T \cap C)$

$\Rightarrow 35=n(T-C)+10 $

$\Rightarrow n(T-C)=35-10=25$

Thus, $25$ people like only tennis.

Similar Questions

હોસ્પિટલમાં  $89\, \%$ દર્દીને હદયની બીમારી છે અને $98\, \%$ એ ફેફસાની બીમારી છે. જો $\mathrm{K}\, \%$ દર્દીને જો બંને પ્રકારની બીમારી હોય તો $\mathrm{K}$ ની કિમંત આપલે પૈકી ક્યાં ગણમાં શક્ય નથી.

  • [JEE MAIN 2021]

$35$ વિદ્યાર્થીઓના વર્ગમાં $24$ ને ક્રિકેટ રમવું ગમે છે અને $16$ ને ફૂટબૉલ રમવું ગમે છે. દરેક વિદ્યાર્થી બે રમતોમાંથી ઓછામાં ઓછી એક રમત રમવાનું પસંદ કરે છે. ક્રિકેટ અને ફૂટબૉલ બંને રમત રમવાનું કેટલા વિદ્યાર્થીઓ પસંદ કરતા હશે ?

એક સર્વે મુજબ $63\%$ અમેરીકનને ચીઝ અને$76\%$ ને સફરજન પસંદ છે. જો $x\%$ ને ચીઝ અને સફરજન પસંદ હોય તો  . . . .

$500$ મોટરમાલિક વિષયક સંશોધનમાં માલૂમ પડ્યું કે $\mathrm{A}$ પ્રકારની મોટરના માલિકોની સંખ્યા $400$ અને $\mathrm{B}$ પ્રકારની મોટરના માલિકોની સંખ્યા $200$ છે. જ્યારે $50$ મોટર માલિકો $\mathrm{A}$ અને $\mathrm{B}$ બંને પ્રકારની મોટર ધરાવે છે. શું આ માહિતી સાચી છે ?

એક કોલેજ દ્વારા પુરુષોની રમતમાં $38$ ચંદ્રકો ફૂટબૉલમાં, $15$ બાસ્કેટબૉલમાં અને $20$ ક્રિકેટમાં એનાયત કરવામાં આવ્યાં. જો આ ચંદ્રકો કુલ $58$ પુરુષોને મળ્યા હોય અને માત્ર $3$ પુરુષોને ત્રણેય રમતના ચંદ્રકો મળ્યાં હોય. તો કેટલી વ્યક્તિને ત્રણમાંથી બરાબર બે ચંદ્રક મળ્યાં હશે?