- Home
- Standard 12
- Physics
1. Electric Charges and Fields
medium
In a particle accelerator, a current of $500 \,\mu A$ is carried by a proton beam in which each proton has a speed of $3 \times 10^7 \,m / s$. The cross-sectional area of the beam is $1.50 \,mm ^2$. The charge density in this beam (in $C / m ^3$ ) is close to
A
$10^{-8}$
B
$10^{-7}$
C
$10^{-6}$
D
$10^{-5}$
(KVPY-2018)
Solution
(d)
If $Q$ is charge contained in $L$ length of beam of area $A$, then
$L \times A \times \rho=Q$
where, $\rho=$ charge density of beam.
So,
$\rho=\frac{Q}{L \times A}=\frac{Q / t}{L / t \times A}=\frac{I}{v \times A}$
$=\frac{500 \times 10^{-6}}{3 \times 10^7 \times 150 \times 10^{-6}}$
$=\frac{5}{3 \times 1.5} \times 10^{-5}=1.1 \times 10^{-5} \,Cm ^{-3}$
Standard 12
Physics
Similar Questions
normal