In a particular system of units, a physical quantity can be expressed in terms of the electric charge $c$, electron mass $m_c$, Planck's constant $h$, and Coulomb's constant $k=\frac{1}{4 \pi \epsilon_0}$, where $\epsilon_0$ is the permittivity of vacuum. In terms of these physical constants, the dimension of the magnetic field is $[B]=[c]^\alpha\left[m_c\right]^\beta[h]^\gamma[k]^\delta$. The value of $\alpha+\beta+\gamma+\delta$ is. . . . .
$3$
$4$
$5$
$6$
The speed of a wave produced in water is given by $v=\lambda^a g^b \rho^c$. Where $\lambda$, g and $\rho$ are wavelength of wave, acceleration due to gravity and density of water respectively. The values of $a , b$ and $c$ respectively, are
If the velocity of light $c$, universal gravitational constant $G$ and planck's constant $h$ are chosen as fundamental quantities. The dimensions of mass in the new system is
From the equation $\tan \theta = \frac{{rg}}{{{v^2}}}$, one can obtain the angle of banking $\theta $ for a cyclist taking a curve (the symbols have their usual meanings). Then say, it is
The potential energy of a particle varies with distance $x$ from a fixed origin as $V = \frac{{A\sqrt x }}{{x + B}}$,where
$A$ and $B$ are constants. The dimensions of $AB$ are
The dimensions of Planck's constant and angular momentum are respectively