एक विशेष मात्रक पद्धति निकाय (system of units) में, एक भौतिकी राशि को इलेक्ट्रॉनिक आवेश $e$, इलेक्ट्रॉन द्रव्यमान $m_e$ प्लांक नियतांक (Planck's constant) $h$ और कूलाम्ब नियतांक $k=\frac{1}{4 \pi \epsilon_0}$ के रूप में निरूपित किया जाता है, जहाँ $\epsilon_0$ निर्वात का परावेधुतांक (permittivity) है। इन भौतिकीय नियतांको के रूप में, चुम्बकीय क्षेत्र की विमा (dimension) $[B]=[e]^\alpha\left[m_e\right]^\beta[h]^\gamma[k]^\delta$ है। $\alpha+\beta+\gamma+\delta$ का मान. . . . . है ।
$3$
$4$
$5$
$6$
यदि इलेक्ट्रॉन-आवेश $e$, इलेक्ट्रॉन-द्रव्यमान $m$, निर्वात् में प्रकाश के वेग $c$ तथा प्लाँक स्थिरांक $h$, को मूल राशियाँ मान लिया जाय तो, निर्वात् की चुम्बकशीलता $\mu_{0}$ का मात्रक होगा :
दो राशियों $A$ तथा $B$ की विमायें भिन्न है। निम्न में से किस गणितीय संक्रिया की भौतिक सार्थकता हैं
यदि ऊर्जा $(E)$, वेग $(v)$ तथा समय $(T)$ को मूल राशियाँ माना जाये तो पृष्ठ तनाव की विमा होंगी
एक भौतिक राशि $\vec{S}$ को $\vec{S}=(\vec{E} \times \vec{B}) / \mu_0$ से परिभाषित किया जाता है, जहाँ $\vec{E}$ विद्युत क्षेत्र (electric field), $\vec{B}$ चुम्बकीय क्षेत्र (magnetic field) और $\mu_0$ निर्वात की चुबंकशीलता (permeability of free space) है। निम्न में से किसकी (किनकी) विमाएँ $\vec{S}$ की विमाओं के समान है?
$(A)$ $\frac{\text { Energy }}{\text { charge } \times \text { current }}$
$(B)$ $\frac{\text { Force }}{\text { Length } \times \text { Time }}$
$(C)$ $\frac{\text { Energy }}{\text { Volume }}$
$(D)$ $\frac{\text { Power }}{\text { Area }}$