एक विशेष मात्रक पद्धति निकाय (system of units) में, एक भौतिकी राशि को इलेक्ट्रॉनिक आवेश $e$, इलेक्ट्रॉन द्रव्यमान $m_e$ प्लांक नियतांक (Planck's constant) $h$ और कूलाम्ब नियतांक $k=\frac{1}{4 \pi \epsilon_0}$ के रूप में निरूपित किया जाता है, जहाँ $\epsilon_0$ निर्वात का परावेधुतांक (permittivity) है। इन भौतिकीय नियतांको के रूप में, चुम्बकीय क्षेत्र की विमा (dimension) $[B]=[e]^\alpha\left[m_e\right]^\beta[h]^\gamma[k]^\delta$ है। $\alpha+\beta+\gamma+\delta$ का मान. . . . . है ।
$3$
$4$
$5$
$6$
सूची $-I$ | सूची $-II$ |
$(a)$ धारिता, $C$ | $(i)$ ${M}^{1} {L}^{1} {T}^{-3} {A}^{-1}$ |
$(b)$ मुक्त आकाश की विधुत शीलता, $\varepsilon_{0}$ | $(ii)$ ${M}^{-1} {L}^{-3} {T}^{4} {A}^{2}$ |
$(c)$ मुक्त आकाश की पारगम्यता, $\mu_{0}$ | $(iii)$ ${M}^{-1} L^{-2} T^{4} A^{2}$ |
$(d)$ विधुत क्षेत्र, $E$ | $(iv)$ ${M}^{1} {L}^{1} {T}^{-2} {A}^{-2}$ |
किसी गैस का अवस्था समीकरण निम्न प्रकार दिया जाता है $\left( {P + \frac{a}{{{V^2}}}} \right) = \frac{{b\theta }}{l}$ जहाँ $P$ दाब, $V$ आयतन तथा $\theta $ परम ताप है तथा $a$ व $b$ नियतांक है। $a$ का विमीय सूत्र होगा
यदि ऊर्जा $(E)$, वेग $(v)$ तथा बल $(F)$ को मूल राशि माना जाए तो द्रव्यमान की विमा क्या होगी
यदि बल [F], त्वरण [A] तथा समय [T] को मुख्य भौतिक राशियाँ मान लिया जाए, तो ऊर्जा की विमा ज्ञात कीजिए।
कोई वस्तु द्रव में गतिशील है। इस पर क्रियाशील श्यान बल, वेग के समानुपाती है, तो समानुपातिक नियतांक की विमा होगी