- Home
- Standard 12
- Physics
કોઈ વિસ્તારનું વિધુતસ્થિતિમાન $V (x,y,z) =6x-8xy-8y+6yz$ મુજબ આપવામાં આવે છે, જ્યાં $V$ એ વોલ્ટમાં અને $x,y,z $ બદલાય છે. $(1,1,1) $ બિંદુ પર રહેલો $2 C$ વિધુતભાર પર લાગતું વિધુતબળ કેટલું હશે?
$6$$\sqrt 5 $ $ N$
$30 \,\,N$
$24\,\,N$
$4$$\sqrt {35} $ $N$
Solution
Here, $V(x, y, z)=6 x-8 x y-8 y+6 y z$
The $x, y$ and $z$ components of electric field are
$E_{x} =-\frac{\partial V}{\partial x}=-\frac{\partial}{\partial x}(6 x-8 x y-8 y+6 y z)$
$=-(6-8 y)=-6+8 y$
$E_{y} =-\frac{\partial V}{\partial y}=-\frac{\partial}{\partial y}(6 x-8 x y-8 y+6 y z)$
$=-(-8 x-8+6 z)=8 x+8-6 z$
$E_{z} =-\frac{\partial V}{\partial z}=-\frac{\partial}{\partial z}(6 x-8 x y-8 y+6 y z)=-6 y $
$\vec{E} =E_{x} \hat{i}+E_{y} \hat{j}+E_{z} \hat{k}$
$=(-6+8 y) \hat{i}+(8 x+8-6 z) \hat{j}-6 y \hat{k}$
At point $(1,1,1)$
$\bar{E}=(-6+8) \hat{i}+(8+8-6) \hat{j}-6 \hat{k}=2 \hat{i}+10 \hat{j}-6 \hat{k}$
The magnitude of electric field $\vec{E}$ is
$\vec{E}=\sqrt{E_{x}^{2}+E_{y}^{2}+E_{z}^{2}}=\sqrt{(2)^{2}+(10)^{2}+(-6)^{2}}$
$=\sqrt{140}=2 \sqrt{35} \,{N} {C}^{-1}$
Electric force experienced by the charge $F=q E=2 \mathrm{C} \times 2 \sqrt{35} \mathrm{\,NC}^{-1}=4 \sqrt{35}\mathrm{\,N}$