9.Straight Line
normal

The origin and the points where the line $L_1$ intersect the $x$ -axis and $y$ -axis are vertices of right angled triangle $T$ whose area is $8$. Also the line $L_1$ is perpendicular to line $L_2$ : $4x -y = 3$, then perimeter of triangle $T$ is -

A

$10 + \sqrt {68}$

B

$8 + \sqrt {32}$

C

$17 + \sqrt {257}$

D

$4 \sqrt {2}+ 4$

Solution

Let $L_1$ $\equiv$ $x + 4y -c = 0$
$\therefore$ Points $(c, 0),$ $\left( {0,\frac{c}{4}} \right)$ $(0, 0)$
area $= 8 \Rightarrow c^2 = 64 \Rightarrow c = 8$ or $-8$
$\therefore$ perimeter $=8 + 2 + \sqrt {68}  = 10 + \sqrt {68}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.