સાદા લોલકના પ્રયોગમાં ગુરુત્વ પ્રવેગ $g$ ના માપન માટેના $20$ અવલોકન $1\, s$ લઘુત્તમ માપશક્તિ ધરાવતી ઘડિયાળ દ્વારા માપવામાં આવે છે. તેના સમયના માપનનું સરેરાશ મૂલ્ય $30\,s$ મળે છે. લોલકની લંબાઈ $1\, mm$ લઘુત્તમ માપશક્તિ ધરાવતી મીટરપટ્ટી વડે માપતા $55.0\,cm$ મળે છે. $g$ ના માપનમા ........... $\%$ ત્રુટિ હશે.
$0.7$
$3.5$
$6.8$
$0.2$
એક પદાર્થનું દળ $225 \pm 0.05\, g $ છે. આ માપમાં પ્રતિશત ત્રુટિ શોધો.
કોઈ ભૌતિક રાશિ $p$ ને $p\, = a^{1/2}\, b^2\, c^3\, d^{-4}$ થી દર્શાવેલ છે. જો $a, b, c$ અને $d$ ના માપનમાં રહેલી સાપેક્ષ ત્રુટિ અનુક્રમે $2\% , 1\%, 3\%$ અને $5\%$ હોય, તો $P$ માં રહેલી સાપેક્ષ ત્રુટિ ........... $\%$ હશે.
જો દળના માપનમાં ત્રુટિ $1\%$ અને ત્રિજયાના માપનમાં ત્રુટિ $1.5\%$ હોય તો તકતીના પરિઘમાંથી પસાર થતી અક્ષને અનુલક્ષીને મળતી જડત્વની ચાકમાત્રામાં ત્રુટિ .......... $\%$ હશે.
$6.28$ સેમી. લાંબા રેસાની લંબાઈનું સૌથી યોક્કસ અવલોકન ....... $cm$ છે?
વિધાન: ભૌતિકરાશિઓના માપન માં પ્રત્યક્ષ અને પરોક્ષ પદ્ધતિઓ વપરાય છે.
કારણ: માપનયંત્રની ચોકસાઇ અને પરિશુદ્ધતા તથા માપનમાં રહેલી ત્રુટિઓ ને સાથે રાખીને જે તે પરિણામ રજૂ કરવું જોઈએ.