In a survey of $600$ students in a school, $150$ students were found to be taking tea and $225$ taking coffee, $100$ were taking both tea and coffee. Find how many students were taking neither tea nor coffee?
Let $U$ be the set of all students who took part in the survey.
Let $T$ be the set of students taking tea.
Let $C$ be the set of students taking coffee.
Accordingly, $n(U)=600, n(T)=150, n(C)=225, n(T \cap C)=100$
To find : Number of student taking neither tea nor coffee i.e., we have to find $n\left(T^{\prime} \cap C^{\prime}\right)$
$n\left(T^{\prime} \cap C^{\prime}\right)=n(T \cup C)^{\prime}$
$=n(U)-n(T \cup C)$
$=n(U)-[n(T)+n(C)-n(T \cap C)]$
$=600-[150+225-100]$
$=600-275$
$=325$
Hence, $325$ students were taking neither tea nor coffee.
In a classroom, one-fifth of the boys leave the class and the ratio of the remaining boys to girls is $2: 3$. If further $44$ girls leave the class, then class the ratio of boys to girls is $5: 2$. How many more boys should leave the class so that the number of boys equals that of girls?
A class has $175$ students. The following data shows the number of students obtaining one or more subjects. Mathematics $100$, Physics $70$, Chemistry $40$; Mathematics and Physics $30$, Mathematics and Chemistry $28$, Physics and Chemistry $23$; Mathematics, Physics and Chemistry $18$. How many students have offered Mathematics alone
There are $200$ individuals with a skin disorder, $120$ had been exposed to the chemical $C _{1}, 50$ to chemical $C _{2},$ and $30$ to both the chemicals $C _{1}$ and $C _{2} .$ Find the number of individuals exposed to
Chemical $C _{1}$ but not chemical $C _{2}$
In a committee, $50$ people speak French, $20$ speak Spanish and $10$ speak both Spanish and French. How many speak at least one of these two languages?
In a school there are $20$ teachers who teach mathematics or physics. Of these, $12$ teach mathematics and $4$ teach both physics and mathematics. How many teach physics ?