- Home
- Standard 11
- Mathematics
એ ક શાળાના $600$ વિદ્યાર્થીઓના સર્વેક્ષણમાં $150$ વિદ્યાર્થીઓ ચા પીતા હતા અને $225$ કૉફી પીતા હતા. $100$ વિદ્યાર્થીઓ ચા અને કૉફી બંને પીતા હતા. કૉફી અને ચા બંને પૈકી કંઈપણ નહિ પીનારા વિદ્યાર્થીઓની સંખ્યા શોધો.
$325$
$325$
$325$
$325$
Solution
Let $U$ be the set of all students who took part in the survey.
Let $T$ be the set of students taking tea.
Let $C$ be the set of students taking coffee.
Accordingly, $n(U)=600, n(T)=150, n(C)=225, n(T \cap C)=100$
To find : Number of student taking neither tea nor coffee i.e., we have to find $n\left(T^{\prime} \cap C^{\prime}\right)$
$n\left(T^{\prime} \cap C^{\prime}\right)=n(T \cup C)^{\prime}$
$=n(U)-n(T \cup C)$
$=n(U)-[n(T)+n(C)-n(T \cap C)]$
$=600-[150+225-100]$
$=600-275$
$=325$
Hence, $325$ students were taking neither tea nor coffee.