1.Set Theory
medium

किसी विद्यालय के $600$ विद्यार्थियों के सर्वेक्षण से ज्ञात हुआ कि $150$ विद्यार्थी चाय, $225$ विद्यार्थी कॉफी तथा $100$ विद्यार्थी चाय और कॉफी दोनों पीते हैं। ज्ञात कीजिए कि कितने विद्यार्थी न तो चाय पीते हैं और न कॉफी पीते हैं।

A

$325$

B

$325$

C

$325$

D

$325$

Solution

Let $U$ be the set of all students who took part in the survey.

Let $T$ be the set of students taking tea.

Let $C$ be the set of students taking coffee.

Accordingly, $n(U)=600, n(T)=150, n(C)=225, n(T \cap C)=100$

To find : Number of student taking neither tea nor coffee i.e., we have to find $n\left(T^{\prime} \cap C^{\prime}\right)$

$n\left(T^{\prime} \cap C^{\prime}\right)=n(T \cup C)^{\prime}$

$=n(U)-n(T \cup C)$

$=n(U)-[n(T)+n(C)-n(T \cap C)]$

$=600-[150+225-100]$

$=600-275$

$=325$

Hence, $325$ students were taking neither tea nor coffee.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.