किसी विद्यालय के $600$ विद्यार्थियों के सर्वेक्षण से ज्ञात हुआ कि $150$ विद्यार्थी चाय, $225$ विद्यार्थी कॉफी तथा $100$ विद्यार्थी चाय और कॉफी दोनों पीते हैं। ज्ञात कीजिए कि कितने विद्यार्थी न तो चाय पीते हैं और न कॉफी पीते हैं।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $U$ be the set of all students who took part in the survey.

Let $T$ be the set of students taking tea.

Let $C$ be the set of students taking coffee.

Accordingly, $n(U)=600, n(T)=150, n(C)=225, n(T \cap C)=100$

To find : Number of student taking neither tea nor coffee i.e., we have to find $n\left(T^{\prime} \cap C^{\prime}\right)$

$n\left(T^{\prime} \cap C^{\prime}\right)=n(T \cup C)^{\prime}$

$=n(U)-n(T \cup C)$

$=n(U)-[n(T)+n(C)-n(T \cap C)]$

$=600-[150+225-100]$

$=600-275$

$=325$

Hence, $325$ students were taking neither tea nor coffee.

Similar Questions

किसी शहर में, $25 \%$ परिवारों के पास फोन है तथा $15 \%$ के पास कार है ; $65 \%$ परिवारों के पास नो फोन है और न ही कार है, तथा $2,000$ परिवारों के पास फोन तथा कार दोनों हैं। निम्न तीन कथनों पर विचार कीजिए

$(a)$ $5 \%$ परिवारों के पास कार तथा फोन दोनों हैं।

$(b)$ $35 \%$ परिवारों के पास या तो कार है या फोन है।

$(c)$ शहर में $40,000$ परिवार रहते हैं। तो,

  • [JEE MAIN 2015]

$40$ छात्रों का एक समूह $3$ विषयों गणित, भौतिक विज्ञान तथा रसायन विज्ञान की परीक्षा में बैठा। यह पाया गया कि सभी छात्र कम से कम विषय में उत्तीर्ण हुए, $20$ छात्र गणित में उत्तीर्ण हुए, $25$ छात्र भौतिक विज्ञान में उत्तीर्ण हुए, $16$ छात्र रसायन विज्ञान में उत्तीर्ण हुए, अधिक से अधिक $11$ छात्र गणित तथा भौतिक विज्ञान दोनो में उत्तीर्ण हुए। अधिक से अधिक $15$ छात्र भौतिक विज्ञान तथा रसायन विज्ञान दोनो में उत्तीर्ण हुए, अधिक से अधिक $15$ छात्र गणित तथा रसायन विज्ञान दोनो में उत्तीर्ण हुए। तो तीनों विषयों में उत्तीर्ण होंने वाले छात्रों की अधिकतम संख्या है ............

  • [JEE MAIN 2024]

किसी विद्यालय के $800 $ लड़कों में से, $224 $ क्रिकेट, $240 $ हॉकी तथा $336 $ बास्केटबॉल खेलते हैं। कुल $64$  बास्केटबॉल और हॉकी, $80 $ क्रिकेट और बास्केटबॉल तथा $40$  क्रिकेट और हॉकी खेलते हैं, तथा $24 $ तीनों खेल खेलते हैं तब कोई भी खेल न खेलने वाले लड़कों की संख्या है

$70$ व्यक्तियों के समूह में, $37$ कॉफ़ी, $52$ चाय पसंद करते हैं और प्रत्येक व्यक्ति दोनों में से कम से कम एक पेय पसंद करता है, तो कितने व्यक्ति कॉफ़ी और चाय दोनों को पसंद करते हैं ?

एक निश्चित स्कूल में, $74 %$ छात्र क्रिकेट पसंद करते हैं, $76 %$ छात्र फुटबॉल पसंद करते हैं और $82 %$ टेनिस पसंद करते हैं। तब, कम से कम $......%$ छात्रों को तीनों खेलों की पसंद है।

  • [KVPY 2009]