Gujarati
11.Dual Nature of Radiation and matter
medium

$\frac{e}{m}$ ज्ञात करने के थॉमसन प्रयोग में, $2.5$ $kV$ से त्वरित इलेक्ट्रॉन, अभिलम्बवत् विद्युत तथा चुम्बकीय क्षेत्र जिनकी तीव्रताऐं क्रमश: $3.6 \times {10^4}V{m^{ - 1}}$ व $1.2 \times {10^{ - 3}}T$ हैं, के क्षेत्र में प्रवेश करता है, तथा अविचलित रहता है। इलेक्ट्रॉन के लिए $\frac{e}{m}$ का मापा गया मान होगा

A

$1.0 \times {10^{11}}C{\rm{ - }}k{g^{ - 1}}$

B

$1.76 \times {10^{11}}C{\rm{ - }}k{g^{ - 1}}$

C

$1.80 \times {10^{11}}C{\rm{ - }}k{g^{ - 1}}$

D

$1.85 \times {10^{11}}C{\rm{ - }}k{g^{ - 1}}$

Solution

$\frac{e}{m} = \frac{{{E^2}}}{{2V{B^2}}} = \frac{{{{(3.6 \times {{10}^4})}^2}}}{{2 \times 2.5 \times {{10}^3} \times {{(1.2 \times {{10}^{ – 3}})}^2}}}$

$ = 1.8 \times {10^{11}}C/kg$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.