$\mathop A\limits^ \to = 2\hat i + 4\hat j + 4\hat k$ तथा $\overrightarrow B = 4\hat i + 2\hat j – 4\hat k$ दो सदिश हैं। उनके मध्य कोण …….. $^o$ होगा
सदिशों $\mathop A\limits^ \to = 2\hat i + 3\hat j$ तथा $\mathop B\limits^ \to = \hat i + 4\hat j$ द्वारा प्रदर्शित समान्तर चतुभ्र्ज का क्षेत्रफल होगा
किन्ही दो सदिश $\overrightarrow A $ तथा $\overrightarrow B $ के लिये यदि $\mathop A\limits^ \to \,.\,\mathop B\limits^ \to = \,\,|\mathop A\limits^ \to \times \mathop B\limits^ \to |$ हो तो $\mathop C\limits^ \to = \mathop A\limits^ \to + \mathop B\limits^ \to $ का परिमाण होगा
माना $\mathop A\limits^ \to = \hat iA\,\cos \theta + \hat jA\,\sin \theta $ कोई सदिश है। सदिश $\mathop A\limits^ \to $ के लम्बवत् सदिश $\mathop B\limits^ \to $ होगा
Confusing about what to choose? Our team will schedule a demo shortly.