कारण सहित बताइए कि अदिश तथा सदिश राशियों के साथ क्या निम्नलिखित बीजगणितीय संक्रियाएँ अर्थपूर्ण हैं ?
$(a)$ दो अदिशों को जोड़ना,
$(b)$ एक ही विमाओं के एक सदिश व एक अदिश को जोड़ना,
$(c)$ एक सदिश को एक अदिश से गुणा करना,
$(d)$ दो अदिशों का गुणन,
$(e)$ दो सदिशों को जोड़ना,
$(f)$ एक सदिश के घटक को उसी सदिश से जोड़ना
$(a)$ Meaningful : The addition of two scalar quantities is meaningful only if they both represent the same physical quantity.
$(b)$ Not Meaningful : The addition of a vector quantity with a scalar quantity is not meaningful.
$(c)$ Meaningful : A scalar can be multiplied with a vector. For example, force is multiplied with time to give impulse.
$(d)$ Meaningful : A scalar, irrespective of the physical quantity it represents, can be multiplied with another scalar having the same or different dimensions.
$(e)$ Meaningful : The addition of two vector quantities is meaningful only if they both represent the same physical quantity.
$(f)$ Meaningful : A component of a vector can be added to the same vector as they both have the same dimensions.
निम्नलिखित में से प्रत्येक कथन को ध्यानपूर्वक पढ़िए और कारण सहित बताइए कि यह सत्य है या असत्य :
$(a)$ किसी सदिश का परिमाण सदैव एक अदिश होता है,
$(b)$ किसी सदिश का प्रत्येक घटक सदैव अदिश होता है,
$(c)$ किसी कण द्वारा चली गई पथ की कुल लंबाई सदैव विस्थापन सदिश के परिमाण के बराबर होती है,
$(d)$ किसी कण की औसत चाल ( पथ तय करने में लगे समय द्वारा विभाजित कुल पथ-लंबाई) समय के समान-अंतराल में कण के औसत वेग के परिमाण से अधिक या उसके बराबर होती है ।
$(e)$ उन तीन सदिशों का योग जो एक समतल में नहीं हैं, कभी भी शून्य सदिश नहीं होता ।
यदि $\mathop A\limits^ \to = 3\hat i + 4\hat j$ तथा $\overrightarrow B = 7\hat i + 24\hat j,$ तब वह सदिश, जिसका परिमाण $B$ के बराबर तथा दिशा $A$ के समांतर हो, होगा
यदि $\mathop A\limits^ \to = 2\hat i + 4\hat j - 5\hat k$ तो सदिश $\mathop A\limits^ \to $ की दिक्कोज्यायें हैं
आयताकार निर्देशांक पद्धति में किसी कण की स्थिति $(3, 2, 5)$ है। इसका स्थिति सदिश होगा
$(\hat i + \hat j)$ के अनुदिश इकाई सदिश होगा