In an experiment of determine the Young's modulus of wire of a length exactly $1\; m$, the extension in the length of the wire is measured as $0.4\,mm$ with an uncertainty of $\pm 0.02\,mm$ when a load of $1\,kg$ is applied. The diameter of the wire is measured as $0.4\,mm$ with an uncertainty of $\pm 0.01\,mm$. The error in the measurement of Young's modulus $(\Delta Y)$ is found to be $x \times 10^{10}\,Nm ^{-2}$. The value of $x$ is
$\left[\right.$ Take $\left.g =10\,m / s ^{2}\right]$
$25$
$20$
$2$
$8$
The acceleration due to gravity is measured on the surface of earth by using a simple pendulum. If $\alpha$ and $\beta$ are relative errors in the measurement of length and time period respectively, then percentage error in the measurement of acceleration due to gravity is
Time intervals measured by a clock give the following readings :
$1.25 \;s , 1.24\; s , 1.27\; s , 1.21 \;s$ and $1.28\; s$
What is the percentage relative error of the observations?
A certain body weighs $22.42\;g$ and has a measured volume of $4.7 \;cc .$ The possible error in the measurement of mass and volume are $0.01\; gm$ and $0.1 \;cc .$
Then maximum error in the density will be
A physical quantity $A$ is related to four observable $a,b,c$ and $d$ as follows, $A = \frac{{{a^2}{b^3}}}{{c\sqrt d }}$, the percentage errors of measurement in $a,b,c$ and $d$ are $1\%,3\%,2\% $ and $2\% $ respectively. What is the percentage error in the quantity $A$ ......... $\%$