In an experiment of simple pendulum time period measured was $50\,sec$ for $25$ vibrations when the length of the simple pendulum was taken $100\,cm$ . If the least count of stop watch is $0.1\,sec$ . and that of meter scale is $0.1\,cm$ then maximum possible error in value of $g$ is .......... $\%$
$0.5$
$1$
$0.4$
$0.1$
A force $F$ is applied on a square area of side $L$. If the percentage error in the measurement of $L$ is $2 \%$ and that in $F$ is $4 \%$, what is the maximum percentage error in pressure is .......... $\%$
A student determined Young's Modulus of elasticity using the formula $Y=\frac{M g L^{3}}{4 b d^{3} \delta} .$ The value of $g$ is taken to be $9.8 \,{m} / {s}^{2}$, without any significant error, his observation are as following.
Physical Quantity | Least count of the Equipment used for measurement | Observed value |
Mass $({M})$ | $1\; {g}$ | $2\; {kg}$ |
Length of bar $(L)$ | $1\; {mm}$ | $1 \;{m}$ |
Breadth of bar $(b)$ | $0.1\; {mm}$ | $4\; {cm}$ |
Thickness of bar $(d)$ | $0.01\; {mm}$ | $0.4 \;{cm}$ |
Depression $(\delta)$ | $0.01\; {mm}$ | $5 \;{mm}$ |
Then the fractional error in the measurement of ${Y}$ is
If the percentage errors in measuring the length and the diameter of a wire are $0.1 \%$ each. The percentage error in measuring its resistance will be:
In an experiment to find acceleration due to gravity $(g)$ using simple pendulum, time period of $0.5\,s$ is measured from time of $100$ oscillation with a watch of $1\;s$ resolution. If measured value of length is $10\; cm$ known to $1\; mm$ accuracy. The accuracy in the determination of $g$ is found to be $x \%$. The value of $x$ is
The current voltage relation of diode is given by $I=(e^{1000V/T} -1)\;mA$, where the applied voltage $V$ is in volts and the temperature $T$ is in degree Kelvin. If a student makes an error measuring $ \mp 0.01\;V$ while measuring the current of $5\; mA$ at $300\; K$, what will be the error in the value of current in $mA$ ?