In the below graph, point $B$ indicates
Breaking point
Limiting point
Yield point
None of the above
The load versus elongation graph for four wires of the same material is shown in the figure. The thickest wire is represented by the line
The stress-strain curves for brass, steel and rubber are shown in the figure. The lines $A, B$ and $C$ are for
The adjacent graph shows the extension $(\Delta l)$ of a wire of length $1m$ suspended from the top of a roof at one end with a load $W$ connected to the other end. If the cross sectional area of the wire is ${10^{ - 6}}{m^2},$ calculate the young’s modulus of the material of the wire
The diagram shows a force-extension graph for a rubber band. Consider the following statements
$I.$ It will be easier to compress this rubber than expand it
$II.$ Rubber does not return to its original length after it is stretched
$III.$ The rubber band will get heated if it is stretched and released
Which of these can be deduced from the graph
The adjacent graph shows the extension $(\Delta l)$ of a wire of length $1\, m$ suspended from the top of a roof at one end and with a load $W$ connected to the other end. If the cross-sectional area of the wire is $10^{-6}\, m^2$, calculate the Young’s modulus of the material of the wire.