The greatest coefficient in the expansion of ${(1 + x)^{2n + 1}}$ is

  • A

    $\frac{{(2n + 1)\,!}}{{n!(n + 1)!}}$

  • B

    $\frac{{(2n + 2)!}}{{n!(n + 1)!}}$

  • C

    $\frac{{(2n + 1)!}}{{{{[(n + 1)!]}^2}}}$

  • D

    $\frac{{(2n)!}}{{{{(n!)}^2}}}$

Similar Questions

The number of integral terms in the expansion of $(7^{1/3} + 11^{1/9})^{6561}$ is :-

The coefficient of $t^{50}$ in $(1 + t^2)^{25}(1 + t^{25})(1 + t^{40})(1 + t^{45})(1 + t^{47})$ is -

The greatest term in the expansion of $\sqrt 3 {\left( {1 + \frac{1}{{\sqrt 3 }}} \right)^{20}}$ is

If coefficients of ${(2r + 1)^{th}}$ term and ${(r + 2)^{th}}$ term are equal in the expansion of ${(1 + x)^{43}},$ then the value of $r$ will be

If the coefficients of $x^7$ & $x^8$ in the expansion of ${\left[ {2\,\, + \,\,\frac{x}{3}} \right]^n}$ are equal , then the value of $n$ is :