${(a - b)^n},\,n \ge 5,$ के द्विपद विस्तार में पांचवें तथा छठवें पदों का योग शून्य है, तब $\frac{a}{b}$ का मान होगा
$\frac{1}{6}(n - 5)$
$\frac{1}{5}(n - 4)$
$\frac{5}{{(n - 4)}}$
$\frac{6}{{(n - 5)}}$
$(1+x)^{20}$ के प्रसार में मध्य पद का गुणांक तथा $(1+ x )^{19}$ के प्रसार में दो मध्य पदों के गुणांकों के योग का अनुपात है ........ |
दिया गया है कि ${\left( {2 + \frac{3}{8}x} \right)^{10}}$ के प्रसार में चौथा पद महत्त्म संख्यात्मक मान रखता है, तो इसके लिये $x$ के मान का परास होगा
${\left( {{x^2} - 2x} \right)^{10}}$ के विस्तार में ${x^{16}}$ का गुणांक है
यदि $(1+a)^{n}$ के प्रसार में तीन क्रमागत पदों के गुणांक $1: 7: 42$ के अनुपात में हैं तो $n$ का मान ज्ञात कीजिए।
यदि $(1+x)^{ n }$ के द्विपद विस्तार में तीन क्रमिक पदों के गुणांकों में $1: 7: 42$ का अनुपात है, तो इन में से विस्तार में पहला पद है