${(a - b)^n},\,n \ge 5,$ के द्विपद विस्तार में पांचवें तथा छठवें पदों का योग शून्य है, तब $\frac{a}{b}$ का मान होगा
$\frac{1}{6}(n - 5)$
$\frac{1}{5}(n - 4)$
$\frac{5}{{(n - 4)}}$
$\frac{6}{{(n - 5)}}$
यदि सभी $x \in R$ के लिए $1+x^{4}+x^{5}=\sum_{ i =0}^{5} a _{ i }(1+x)^{ i }$ है, तो $a _{2}$ है
$\left(\frac{ x +1}{ x ^{2 / 3}- x ^{1 / 3}+1}-\frac{ x -1}{ x - x ^{1 / 2}}\right)^{10}, x \neq 0,1$ के प्रसार में ' $x$ ' से स्वतंत्र पद बराबर है
${\left( {2{x^2} - \frac{1}{x}} \right)^{12}}$ के प्रसार में $x$ से स्वतंत्र पद होगा
यदि ${(1 + x)^{2n + 2}}$ के प्रसार में मध्य पद का गुणांक $p$ है तथा ${(1 + x)^{2n + 1}}$ के प्रसार में मध्य पदों के गुणांक $q$ तथा $r$ हैं, तब
${\left( {2x - \frac{1}{{2{x^2}}}} \right)^{12}}$ के प्रसार में $x$ से स्वतंत्र पद है