In the equation $\left[X+\frac{a}{Y^2}\right][Y-b]= R T, X$ is pressure, $Y$ is volume, $R$ is universal gas constant and $T$ is temperature. The physical quantity equivalent to the ratio $\frac{a}{b}$ is
Energy
Impulse
Pressure gradient
Coefficient of viscosity
Match List $I$ with List $II$
List $I$ | List $II$ |
$A$ Spring constant | $I$ $(T ^{-1})$ |
$B$ Angular speed | $II$ $(MT ^{-2})$ |
$C$ Angular momentum | $III$ $(ML ^2)$ |
$D$ Moment of Inertia | $IV$ $(ML ^2 T ^{-1})$ |
Choose the correct answer from the options given below
A dimensionally consistent relation for the volume V of a liquid of coefficient of viscosity ' $\eta$ ' flowing per second, through a tube of radius $r$ and length / and having a pressure difference $P$ across its ends, is
The dimensions of the area $A$ of a black hole can be written in terms of the universal gravitational constant $G$, its mass $M$ and the speed of light $c$ as $A=G^\alpha M^\beta c^\gamma$. Here,
The dimensions of electric potential are
Match List $I$ with List $II$ and select the correct answer using the codes given below the lists :
List $I$ | List $II$ |
$P.$ Boltzmann constant | $1.$ $\left[ ML ^2 T ^{-1}\right]$ |
$Q.$ Coefficient of viscosity | $2.$ $\left[ ML ^{-1} T ^{-1}\right]$ |
$R.$ Planck constant | $3.$ $\left[ MLT ^{-3} K ^{-1}\right]$ |
$S.$ Thermal conductivity | $4.$ $\left[ ML ^2 T ^{-2} K ^{-1}\right]$ |
Codes: $ \quad \quad P \quad Q \quad R \quad S $