In the expansion of $\left(\frac{\mathrm{x}}{\cos \theta}+\frac{1}{\mathrm{x} \sin \theta}\right)^{16},$ if $\ell_{1}$ is the least value of the term independent of $x$ when $\frac{\pi}{8} \leq \theta \leq \frac{\pi}{4}$ and $\ell_{2}$ is the least value of the term independent of $x$ when $\frac{\pi}{16} \leq \theta \leq \frac{\pi}{8},$ then the ratio $\ell_{2}: \ell_{1}$ is equal to
$1 : 8$
$1 : 16$
$8 : 1$
$16 : 1$
The middle term in the expansion of ${\left( {x + \frac{1}{{2x}}} \right)^{2n}}$, is
If the coefficients of the three consecutive terms in the expansion of $(1+ x )^{ n }$ are in the ratio $1: 5: 20$, then the coefficient of the fourth term is $............$.
The coefficient of the term independent of $x$ in the expansion of $(1 + x + 2{x^3}){\left( {\frac{3}{2}{x^2} - \frac{1}{{3x}}} \right)^9}$ is
The value of $x$ in the expression ${[x + {x^{{{\log }_{10}}}}^{(x)}]^5}$, if the third term in the expansion is $10,00,000$
Let the coefficients of $x ^{-1}$ and $x ^{-3}$ in the expansion of $\left(2 x^{\frac{1}{5}}-\frac{1}{x^{\frac{1}{5}}}\right)^{15}, x>0$, be $m$ and $n$ respectively. If $r$ is a positive integer such $m n^{2}={ }^{15} C _{ r } .2^{ r }$, then the value of $r$ is equal to