In the expansion of ${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$, the coefficient of ${x^4}$is

  • [IIT 1983]
  • A

    $\frac{{405}}{{256}}$

  • B

    $\frac{{504}}{{259}}$

  • C

    $\frac{{450}}{{263}}$

  • D

    None of these

Similar Questions

If the coefficient of $4^{th}$ term in the expansion of ${(a + b)^n}$ is $56$, then $n$ is

The coefficient of ${x^{53}}$ in the following expansion $\sum\limits_{m = 0}^{100} {{\,^{100}}{C_m}{{(x - 3)}^{100 - m}}} {.2^m}$is

For $\mathrm{r}=0,1, \ldots, 10$, let $\mathrm{A}_{\mathrm{r}}, \mathrm{B}_{\mathrm{r}}$ and $\mathrm{C}_{\mathrm{r}}$ denote, respectively, the coefficient of $\mathrm{x}^{\mathrm{r}}$ in the expansions of $(1+\mathrm{x})^{10}$, $(1+\mathrm{x})^{20}$ and $(1+\mathrm{x})^{30}$. Then $\sum_{r=1}^{10} A_r\left(B_{10} B_r-C_{10} A_r\right)$ is equal to

  • [IIT 2010]

Coefficient of $x^6$ in the binomial expansion ${\left( {\frac{{4{x^2}}}{3}\; - \;\frac{3}{{2x}}} \right)^9}$ is

Expand using Binomial Theorem $\left(1+\frac{ x }{2}-\frac{2}{ x }\right)^{4}, x \neq 0$