${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$ के विस्तार में ${x^4}$ का गुणांक है
$\frac{{405}}{{256}}$
$\frac{{504}}{{259}}$
$\frac{{450}}{{263}}$
इनमें से कोई नहीं
${\left( {\frac{a}{x} + bx} \right)^{12}}$ के विस्तार में $x^{-10}$ का गुणांक होगा
सिद्ध कीजिए कि $(1+x)^{2 n}$ के प्रसार में $x^{n}$ का गुणांक, $(1+x)^{2 n-1}$ के प्रसार में $x^{n}$ के गुणांक का दुगना होता है।
यदि ${\left( {\sqrt[3]{{\frac{a}{{\sqrt b }}}} + \sqrt {\frac{b}{{\sqrt[3]{a}}}} } \right)^{21}}$ के प्रसार में $(r + 1)$ वें पद में $a$ तथा $b$ की समान घातें हैं, तब $r$ का मान है
यदि $n$ एक सम धनात्मक पूर्णांक है, तब ${(1 + x)^n}$ के प्रसार में महत्तम पद का गुणांक भी महत्तम हो, इसकी शर्त है
$(x+a)^{n}$ के प्रसार में अंत से $r^{\text {th }}$ पद ज्ञात कीजिए।