If $7^{th}$ term from beginning in the binomial expansion ${\left( {\frac{3}{{{{\left( {84} \right)}^{\frac{1}{3}}}}} + \sqrt 3 \ln \,x} \right)^9},\,x > 0$ is equal to $729$ , then possible value of $x$ is
$e^2$
$e$
$\frac {e}{2}$
$2e$
The coefficient of $x^2$ in the expansion of the product $(2 -x^2)$. $((1 + 2x + 3x^2)^6 +(1 -4x^2)^6)$ is
The middle term in the expansion of ${\left( {1 - \frac{1}{x}} \right)^n}\left( {1 - {x}} \right)^n$ in powers of $x$ is
In the expansion of ${\left( {x + \frac{2}{{{x^2}}}} \right)^{15}}$, the term independent of $x$ is
Evaluate $(\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6}$
For a positive integer $n,\left(1+\frac{1}{x}\right)^{n}$ is expanded in increasing powers of $x$. If three consecutive coefficients in this expansion are in the ratio, $2: 5: 12,$ then $n$ is equal to