In the expansion of ${\left( {x + \frac{2}{{{x^2}}}} \right)^{15}}$, the term independent of $x$ is

  • A

    $^{15}{C_6}{2^6}$

  • B

    $^{15}{C_5}{2^5}$

  • C

    $^{15}{C_4}{2^4}$

  • D

    $^{15}{C_8}{2^8}$

Similar Questions

If coefficient of ${(2r + 3)^{th}}$ and ${(r - 1)^{th}}$ terms in the expansion of ${(1 + x)^{15}}$ are equal, then value of r is

The absolute difference of the coefficients of $x^{10}$ and $x^7$ in the expansion of $\left(2 x^2+\frac{1}{2 x}\right)^{11}$ is equal to

  • [JEE MAIN 2023]

If the $6^{th}$ term in the expansion of the binomial ${\left[ {\frac{1}{{{x^{\frac{8}{3}}}}}\,\, + \,\,{x^2}\,{{\log }_{10}}\,x} \right]^8}$ is $5600$, then $x$ equals to

If the coefficients of $a^{r-1}, a^{r}$ and $a^{r+1}$ in the expansion of $(1+a)^{n}$ are in arithmetic progression, prove that $n^{2}-n(4 r+1)+4 r^{2}-2=0$

A ratio of the $5^{th}$ term from the beginning to the $5^{th}$ term from the end in the binomial expansion of $\left( {{2^{1/3}} + \frac{1}{{2{{\left( 3 \right)}^{1/3}}}}} \right)^{10}$ is

  • [JEE MAIN 2019]