In the expansion of the following expression $1 + (1 + x) + {(1 + x)^2} + ..... + {(1 + x)^n}$ the coefficient of ${x^k}(0 \le k \le n)$ is
$^{n + 1}{C_{k + 1}}$
$^n{C_k}$
$^n{C_{n - k - 1}}$
None of these
In the expansion of ${(1 + 3x + 2{x^2})^6}$ the coefficient of ${x^{11}}$ is
Write the general term in the expansion of $\left(x^{2}-y x\right)^{12}, x \neq 0$
The term independent of $x$ in the expansion of $\left( {\frac{1}{{60}} - \frac{{{x^8}}}{{81}}} \right).{\left( {2{x^2} - \frac{3}{{{x^2}}}} \right)^6}$ is equal to
The term independent of $x$ in the expression of $\left(1-x^{2}+3 x^{3}\right)\left(\frac{5}{2} x^{3}-\frac{1}{5 x^{2}}\right)^{11}, x \neq 0$ is
In the binomial expansion of ${(a - b)^n},\,n \ge 5,$ the sum of the $5^{th}$ and $6^{th}$ terms is zero. Then $\frac{a}{b}$ is equal to