7.Binomial Theorem
hard

In the expansion of the following expression $1 + (1 + x) + {(1 + x)^2} + ..... + {(1 + x)^n}$ the coefficient of ${x^k}(0 \le k \le n)$ is

A

$^{n + 1}{C_{k + 1}}$

B

$^n{C_k}$

C

$^n{C_{n - k - 1}}$

D

None of these

Solution

(a)The expression being in $G. P.$ 

$E = 1 + (1 + x) + {(1 + x)^2} + …. + {(1 + x)^n}$

$\frac{{{{(1 + x)}^{n + 1}} – 1}}{{(1 + x) – 1}} = {x^{ – 1}}\{ {(1 + x)^{n + 1}} – 1\} $

$\therefore \,\,\,$The coefficient of $x^k $ in

$E =$ The coefficient of ${x^{k + 1}}$in $\{ {(1 + x)^{n + 1}} – 1\} $

$ = {\,^{n + 1}}{C_{k + 1}}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.