If the formula, $X=3 Y Z^{2}, X$ and $Z$ have dimensions of capacitance and magnetic induction. The dimensions of $Y$ in $M K S Q$ system are
$\left[M^{-3} L^{-2} T^{4} Q^{4}\right]$
$\left[M L^{2} T^{8} Q^{4}\right]$
$\left[M^{-2} L^{-3} T^{2} Q^{4}\right]$
$\left[M^{-2} L^{-2} T Q^{2}\right]$
The dimensional formula for Boltzmann's constant is
The value of gravitational acceleration $C.G.S.$ system is $980 \;cm / sec$ ? .find the value of $g$ in $M.K.S$ system?
The dimension of $\frac{\mathrm{B}^{2}}{2 \mu_{0}}$, where $\mathrm{B}$ is magnetic field and $\mu_{0}$ is the magnetic permeability of vacuum, is
A length-scale $(l)$ depends on the permittivity $(\varepsilon)$ of a dielectric material. Boltzmann constant $\left(k_B\right)$, the absolute temperature $(T)$, the number per unit volune $(n)$ of certain charged particles, and the charge $(q)$ carried by each of the particless. Which of the following expression($s$) for $l$ is(are) dimensionally correct?
($A$) $l=\sqrt{\left(\frac{n q^2}{\varepsilon k_B T}\right)}$
($B$) $l=\sqrt{\left(\frac{\varepsilon k_B T}{n q^2}\right)}$
($C$)$l=\sqrt{\left(\frac{q^2}{\varepsilon n^{2 / 3} k_B T}\right)}$
($D$) $l=\sqrt{\left(\frac{q^2}{\varepsilon n^{1 / 3} k_B T}\right)}$
If energy $(E),$ velocity $(V)$ and time $(T)$ are chosen as the fundamental quantities, the dimensional formula of surface tension will be