4-1.Newton's Laws of Motion
hard

દડાનું દળ સળિયાનાં દળ કરતાં $\frac{9}{5}$ ગણું છે,સળિયાની લંબાઈ $1\;m$ છે, દડાનું લેવલ એ સળિયાના નીચેના છેડે છે, દડાને સળિયાના ઉપરના છેડે પહોચવા માટે લાગતો સમય(સેકન્ડ માં) શું હશે? 

A

$1.4$

B

$2.45$

C

$3.25$

D

$5$

(AIIMS-2018)

Solution

Let $a_{1}$ and $a_{2}$ be accelerations of a ball (upward) and rod (downward), respectively.

Clearly, from the diagram

$2 a_{1}=a_{2} \ldots( i )$

Now, for the ball

$2 T-\frac{9}{5} m g-\frac{9}{5} m a-(i i)$

and for the rod, $m g-T=m a_{2} \ldots$ $(iii)$

On solving equations $(i)$ and $(iii),$ we get

$a_{1}=\frac{g}{29} m / s^{2} \uparrow$ (upward)

$a_{2}=\frac{2 g}{29} m / s ^{2} \downarrow$ (upward)

So, acceleration of ball $w.r.t$ rod $=a_{1}+a_{2}=\frac{3 g}{29}$

Now, displacement of ball $w.r.t.$ rod when it reaches the upper end of rod is $1\, m$.

Using equation of motion,

$s=u t+\frac{1}{2} a t^{2}$

$s=0+\frac{1}{2} \times \frac{3 \times 10}{29} t^{2}$

$t=\sqrt{\frac{58}{30}}=1.4 s$ (approx)

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.