निम्न चित्र में एक बिन्दु आवेश को बिन्दु $P$ से $A$, $B$ तथा $C$ तक लाने में कार्य क्रमश: $W_A$, $W_B$ तथा $W_c$ ,है, तब
$W_A = W_B = W_C$
$W_A = W_B = W_C=0$
$W_A > W_B > W_C$
$W_A < W_B < W_C$
एक वर्ग की प्रत्येक भुजा की लम्बाई $'a'$ है, इसके चारों कोनों पर $4$ समान $Q$ आवेशों को रखा जाता है। उसके केन्द्र से अनन्त तक
$-Q$ आवेश को हटाने में किया गया कार्य है
एक $\alpha$-कण एवं एक प्रोट्रोन, समान विभवान्तर के द्वारा विश्रामावस्था से त्वरित किए जाते हैं। इन दोनों कणों के द्वारा प्राप्त किए गए रेखीय संवेगों का अनुपात है:
एक त्रिज्या $R$ तथा एकसमान धनात्मक आवेश घनत्व (positive charge density) $\sigma$ की चक्रिका को $x y$ तल पर रखा गया है और इसका केंद्र मूल बिंदु पर है। कूलाम्ब विभव $z$ अक्ष पर $V(z)=\frac{\sigma}{2 \epsilon_0}\left(\sqrt{R^2+z^2}-z\right)$ है। एक कण जिसका धनात्मक आवेश $q$ है को प्रारंभ में विरामावस्था में $z$ अक्ष पर $z=z_0$ तथा $z_0>0$ स्थिति पर रखा जाता है। इसके अतिरिक्त एक कण पर उध्वार्धर (vertical) बल $\vec{F}=-c \hat{k}$ लगता है, जहाँ $c>0$ है। $\beta=\frac{2 c \epsilon_0}{q \sigma}$ लें। निम्न में से कौन सा (से) कथन सही है (हैं)।
$(A)$ $\beta=\frac{1}{4}$ तथा $z_0=\frac{25}{7} R$ के लिए कण मूल बिंदु (origin) पर पहुँचता है।
$(B)$ $\beta=\frac{1}{4}$ तथा $z_0=\frac{3}{7} R$ के लिये कण मूल बिंदु पर पहुँचता है।
$(C)$ $\beta=\frac{1}{4}$ तथा $z_0=\frac{R}{\sqrt{3}}$ के लिए कण $z=z_0$ पर वापस आता है।
$(D)$ $\beta>1$ तथा $z_0>0$ के लिये कण हमेशा मूल बिंदु पर पहुँचता है।
चार समान बिन्दु आवेशों प्रत्येक $Q$ को $x y$ तल में बिन्दु $(0,2),(4,2),(4,-2)$ तथा $(0,-2)$ पर रखा गया है। निर्देशांक निकाय के मूलबिन्दु पर पांचवे आवेश $Q$ को रखने के लिए आवश्यक कार्य का मान होगा।
निम्न में से कौनसा सही है