$A$ અને $B$ એ શુન્યેતર બે ગણ છે અને ગણ $A$ એ ગણ $B$ નો ઉચિત ઉપગણ છે જો $n(A) = 4$, હોય તો $n(A \Delta B)$ ની ન્યૂનતમ કિમત મેળવો. (જ્યાં $\Delta$ એ ગણ $A$ અને ગણ $B$ નો સંમિત તફાવત છે.)
ગણ સાન્ત કે અનંત છે તે નક્કી કરો : $\{ x:x \in N$ અને $2x - 1 = 0\} $
અંતરાલને ગુણધર્મની રીતે લખો : $\left[ {6,12} \right]$
જો $P(A)=P(B)$ હોય, તો સાબિત કરો કે $A=B$.
સમાન ગણની જોડી શોધો (જો હોય તો). તમારા ઉત્તર માટે કારણ આપો.
$A = \{ 0\} ,$
$B = \{ x:x\, > \,15$ અને $x\, < \,5\}, $
$C = \{ x:x - 5 = 0\} ,$
$D = \left\{ {x:{x^2} = 25} \right\},$
$E = \{ \,x:x$ એ સમીકરણ ${x^2} - 2x - 15 = 0$ નું ધન પૂર્ણાક બીજ છે. $\} $