Initially spring in its natural length now a block at mass $0.25 \,kg$ is released than find out maximum force by system on floor ? (in $N$)
$15$
$20$
$25$
$30$
A spring is compressed between two blocks of masses $m_1$ and $m_2$ placed on a horizontal frictionless surface as shown in the figure. When the blocks arc released, they have initial velocity of $v_1$ and $v_2$ as shown. The blocks travel distances $x_1$ and $x_2$ respectively before coming to rest. The ratio $\left( {\frac{{{x_1}}}{{{x_2}}}} \right)$ is
Give the example of variable force. Write the formula of Hook’s law.
Two similar springs $P$ and $Q$ have spring constants $K_P$ and $K_Q$, such that $K_P > K_Q .$ They are stretched first by the same amount (case $a$), then by the same force (case $b$). The work done by the springs $W_P$ and $W_Q$ are related as, in case $(a)$ and case $(b)$ respectively
Draw a plots of mechanical energy, potential energy and kinetic energy versus displacement for different position of a motion of a block attached to a spring.
slowing down of neutrons: In a nuclear reactor a neutron of high speed (typically $10^{7}\; m s ^{-1}$ ) must be slowed to $10^{3}\; m s ^{-1}$ so that it can have a high probability of interacting with isotope $^{235} _{92} U$ and causing it to fission. Show that a neutron can lose most of its kinetic energy In an elastic collision with a light nuclel like deuterlum or carbon which has a mass of only a few times the neutron mass. The material making up the light nuclel, usually heavy water $\left( D _{2} O \right)$ or graphite, is called a moderator.