Ionized hydrogen atoms and $\alpha$ -particles with same momenta enters perpendicular to a constant magnetic field $B$. The ratio of their radii of their paths $\mathrm{r}_{\mathrm{H}}: \mathrm{r}_{\alpha}$ will be

  • [NEET 2019]
  • A

    $2:1$

  • B

    $1:2$

  • C

    $4:1$

  • D

    $1:4$

Similar Questions

In a mass spectrometer used for measuring the masses of ions, the ions are initially accelerated by an electric potential $V$ and then made to describe semicircular paths of radius $R$ using a magnetic field $B$. If $V$ and $B$ are kept constant, the ratio $\left( {\frac{{{\text{charge on the ion}}}}{{{\text{mass of the ion}}}}} \right)$ will be proportional to

  • [AIIMS 2008]

An electron has mass $9 \times {10^{ - 31}}\,kg$ and charge $1.6 \times {10^{ - 19}}C$ is moving with a velocity of ${10^6}\,m/s$, enters a region where magnetic field exists. If it describes a circle of radius $0.10\, m$, the intensity of magnetic field must be

A particle having charge of $10\,\mu C$ and $1\,\mu g$ mass moves along circular path of $10\, cm$ radius in the effect of uniform magnetic field of $0.1\, T$. When charge is at point $'P'$, a uniform electric field applied in the region so charge moves tangentially with constant speed. The value of electric field is......$V/m$

A particle of mass $m,$ charge $Q$ and kinetic energy $K$ enters a transverse uniform magnetic field of induction $B.$ After $3$ $seconds$ the kinetic energy of the particle will be .......$K$

  • [AIPMT 2008]

The figure shows three situations when an electron with velocity $\vec v$ travels through a nuniform magnetic field $\vec B$ . In each case, what is the direction of magnetic force on the electron?