1.Set Theory
easy

Is it true that for any sets $\mathrm{A}$ and $\mathrm{B}, P(A) \cup P(B)=P(A \cup B) ?$ Justify your answer.

Option A
Option B
Option C
Option D

Solution

False

Let $A=\{0,1\}$ and $B =\{1,2\}$

$\therefore A \cup B=\{0,1,2\}$

$P(A)=\{\varnothing,\{0\},\{1\},\{0,1\}\}$

$P(B)=\{\varnothing,\{1\},\{2\},\{1,2\}\}$

$P(A \cup B)=\{\varnothing,\{1\},\{2\},\{0,1\},\{1,2\},\{0,2\},\{0,1,2\}\}$

$P(A) \cup P(B)=\{\varnothing,\{1\},\{0,1\},\{2\},\{1,2\}\}$

$P(A) \cup P(B)=\{\varnothing,\{1\},\{0,1\},\{2\},\{1,2\}\}$

$\therefore P(A) \cup P(B) \neq P(A \cup B)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.