Is it true that for any sets $\mathrm{A}$ and $\mathrm{B}, P(A) \cup P(B)=P(A \cup B) ?$ Justify your answer.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

False

Let $A=\{0,1\}$ and $B =\{1,2\}$

$\therefore A \cup B=\{0,1,2\}$

$P(A)=\{\varnothing,\{0\},\{1\},\{0,1\}\}$

$P(B)=\{\varnothing,\{1\},\{2\},\{1,2\}\}$

$P(A \cup B)=\{\varnothing,\{1\},\{2\},\{0,1\},\{1,2\},\{0,2\},\{0,1,2\}\}$

$P(A) \cup P(B)=\{\varnothing,\{1\},\{0,1\},\{2\},\{1,2\}\}$

$P(A) \cup P(B)=\{\varnothing,\{1\},\{0,1\},\{2\},\{1,2\}\}$

$\therefore P(A) \cup P(B) \neq P(A \cup B)$

Similar Questions

If $A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{5,6,7,8\}$ and $D=\{7,8,9,10\} ;$ find

$A \cup B \cup D$

If $A$ and $B$ are not disjoint sets, then $n(A \cup B)$ is equal to

Consider the sets $X$ and $Y$ of $X = \{ $ Ram , Geeta, Akbar $\} $ and $Y = \{ $ Geeta, David, Ashok $\} $ Find $X \cap Y$

Let $A$ and $B$ be two sets. Then

If $aN = \{ ax:x \in N\} ,$ then the set $3N \cap 7N$ is .....$N$