Let $\frac{1}{{{x_1}}},\frac{1}{{{x_2}}},\frac{1}{{{x_3}}},.....,$ $({x_i} \ne \,0\,for\,\,i\, = 1,2,....,n)$ be in $A.P.$ such that $x_1 = 4$ and $x_{21} = 20.$ If $n$ is the least positive integer for which $x_n > 50,$ then $\sum\limits_{i = 1}^n {\left( {\frac{1}{{{x_i}}}} \right)} $ is equal to.
$3$
$\frac {13}{8}$
$\frac {13}{4}$
$\frac {1}{8}$
Let $A =\left\{1, a _{1}, a _{2} \ldots \ldots a _{18}, 77\right\}$ be a set of integers with $1< a _{1}< a _{2}<\ldots \ldots< a _{18}<77$. Let the set $A + A =\{ x + y : x , y \in A \} \quad$ contain exactly $39$ elements. Then, the value of $a_{1}+a_{2}+\ldots \ldots+a_{18}$ is equal to...........
Maximum value of sum of arithmetic progression $50, 48, 46, 44 ........$ is :-
The sum of all those terms, of the anithmetic progression $3,8,13, \ldots \ldots .373$, which are not divisible by $3$,is equal to $.......$.
If $a,\;b,\;c$ are in $A.P.$, then $\frac{{{{(a - c)}^2}}}{{({b^2} - ac)}} = $
If the ${n^{th}}$ term of an $A.P.$ be $(2n - 1)$, then the sum of its first $n$ terms will be