Let $\frac{1}{{{x_1}}},\frac{1}{{{x_2}}},\frac{1}{{{x_3}}},.....,$ $({x_i} \ne \,0\,for\,\,i\, = 1,2,....,n)$ be in $A.P.$ such that $x_1 = 4$ and $x_{21} = 20.$ If $n$ is the least positive integer for which $x_n > 50,$ then $\sum\limits_{i = 1}^n {\left( {\frac{1}{{{x_i}}}} \right)} $ is equal to.
$3$
$\frac {13}{8}$
$\frac {13}{4}$
$\frac {1}{8}$
If ${a_1} = {a_2} = 2,\;{a_n} = {a_{n - 1}} - 1\;(n > 2)$, then ${a_5}$ is
If $a, b, c, d$ are in $G.P.,$ prove that $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ are in $G.P.$
If the sum and product of the first three term in an $A.P$. are $33$ and $1155$, respectively, then a value of its $11^{th}$ tern is
If the first, second and last terms of an $A.P.$ be $a,\;b,\;2a$ respectively, then its sum will be
Suppose we have an arithmetic progression $a_1, a_2, \ldots a_n, \ldots$ with $a_1=1, a_2-a_1=5$. The median of the finite sequence $a_1, a_2, \ldots, a_k$, where $a_k \leq 2021$ and $a_{k+1} > 2021$ is