Let $\frac{1}{{{x_1}}},\frac{1}{{{x_2}}},\frac{1}{{{x_3}}},.....,$  $({x_i} \ne \,0\,for\,\,i\, = 1,2,....,n)$  be in $A.P.$  such that  $x_1 = 4$ and $x_{21} = 20.$ If $n$  is the least positive integer for which $x_n > 50,$  then $\sum\limits_{i = 1}^n {\left( {\frac{1}{{{x_i}}}} \right)} $  is equal to.

  • [JEE MAIN 2018]
  • A

    $3$

  • B

    $\frac {13}{8}$

  • C

    $\frac {13}{4}$

  • D

    $\frac {1}{8}$

Similar Questions

If ${A_1},\,{A_2}$ be two arithmetic means between $\frac{1}{3}$ and $\frac{1}{{24}}$ , then their values are

Find the sum to $n$ terms of the $A.P.,$ whose $k^{\text {th }}$ term is $5 k+1$

If the $9^{th}$ term of an $A.P.$ be zero, then the ratio of its $29^{th}$ and $19^{th}$ term is

If ${a_1},\,{a_2},....,{a_{n + 1}}$ are in $A.P.$, then $\frac{1}{{{a_1}{a_2}}} + \frac{1}{{{a_2}{a_3}}} + ..... + \frac{1}{{{a_n}{a_{n + 1}}}}$ is

If the sum of $n$ terms of an $A.P.$ is $\left(p n+q n^{2}\right),$ where $p$ and $q$ are constants, find the common difference.