If the sum of $\mathrm{n}$ terms of an $\mathrm{A.P.}$ is $n P+\frac{1}{2} n(n-1) Q,$ where $\mathrm{P}$ and $\mathrm{Q}$ are constants, find the common difference.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $a_{1}, a_{2}, \ldots a_{n}$ be the given $\mathrm{A.P.}$ Then

${S_n} = {a_1} + {a_2} + {a_3} +  \ldots  + {a_{n - 1}} + {a_n} = nP + \frac{1}{2}n(n - 1)Q$

Therefore     $S_{1}=a_{1}=P, S_{2}=a_{1}+a_{2}=2 P+Q$

So that        $a_{2}= S _{2}- S _{1}= P + Q$

Hence, the common difference is given by $d=a_{2}-a_{1}=(P+Q)-P=Q$

Similar Questions

If three positive numbers $a, b$ and $c$ are in $A.P.$ such that $abc\, = 8$, then the minimum possible value of $b$ is

  • [JEE MAIN 2017]

If $\log 2,\;\log ({2^n} - 1)$ and $\log ({2^n} + 3)$ are in $A.P.$, then $n =$

If ${a^2},\,{b^2},\,{c^2}$ be in $A.P.$, then $\frac{a}{{b + c}},\,\frac{b}{{c + a}},\,\frac{c}{{a + b}}$ will be in

If the sum of the roots of the equation $a{x^2} + bx + c = 0$ be equal to the sum of the reciprocals of their squares, then $b{c^2},\;c{a^2},\;a{b^2}$ will be in

  • [IIT 1976]

The ${n^{th}}$ term of an $A.P.$ is $3n - 1$.Choose from the following the sum of its first five terms