Let $a, b, c, d, e$ be natural numbers in an arithmetic progression such that $a+b+c+d+e$ is the cube of an integer and $b+c+d$ is square of an integer. The least possible value of the number of digits of $c$ is

  • [KVPY 2013]
  • A

    $2$

  • B

    $3$

  • C

    $4$

  • D

    $5$

Similar Questions

Let $a_n, n \geq 1$, be an arithmetic progression with first term $2$ and common difference $4$ . Let $M_n$ be the average of the first $n$ terms. Then the sum $\sum \limits_{n=1}^{10} M_n$ is

  • [KVPY 2019]

If $a_1 , a_2, a_3, . . . . , a_n, ....$ are in $A.P.$ such that $a_4 - a_7 + a_{10}\, = m$, then the sum of first $13$ terms of this $A.P.$, is .............. $\mathrm{m}$

  • [JEE MAIN 2013]

The sum of the series $\frac{1}{2} + \frac{1}{3} + \frac{1}{6} + ........$ to $9$ terms is

Let $a_1=8, a_2, a_3, \ldots a_n$ be an $A.P.$ If the sum of its first four terms is $50$ and the sum of its last four terms is $170$ , then the product of its middle two terms is

  • [JEE MAIN 2023]

If $\log _{10} 2, \log _{10} (2^x + 1), \log _{10} (2^x + 3)$ are in $A.P.,$ then :-