Let $f\left( n \right) = \left[ {\frac{1}{3} + \frac{{3n}}{{100}}} \right]n$ , where $[n]$ denotes the greatest integer less than or equal to $n$. Then $\sum\limits_{n = 1}^{56} {f\left( n \right)} $ is equal to
$56$
$689$
$1287$
$1399$
The range of the function $f(x) = \frac{{\sqrt {1 - {x^2}} }}{{1 + \left| x \right|}}$ is
If non-zero real numbers $b$ and $c$ are such that $min \,f\left( x \right) > \max \,g\left( x \right)$, where $f\left( x \right) = {x^2} + 2bx + 2{c^2}$ and $g\left( x \right) = {-x^2} - 2cx + {b^2}$$\left( {x \in R} \right)$; then $\left| {\frac{c}{b}} \right|$ lies in the interval
Let $f(x)$ be a quadratic polynomial such that $f(-2)$ $+f(3)=0$. If one of the roots of $f(x)=0$ is $-1$, then the sum of the roots of $f(x)=0$ is equal to
$f(x,\;y) = \frac{1}{{x + y}}$ is a homogeneous function of degree
Let $f : R \to R$ be a function defined by $f(x) = - \frac{{|x{|^3} + |x|}}{{1 + {x^2}}}$; then the graph of $f(x)$ is lies in the :-