1.Relation and Function
normal

The period of the function $f(x) = e^{x -[x]+|cos\, \pi x|+|cos\, 2\pi x|+....+|cos\, n\pi x|}$ (where $[.]$ denotes greatest integer function); is:-

A

$1$

B

$n \pi$

C

$n$

D

$\frac{\pi}{n}$

Solution

$f(x)=e^{\{x\}+|\cos \pi x|+|\cos 2 \pi x|+\cdots+|\cos n \pi x|}$

$f(x)=e^{\{x\}} \cdot e^{|\cos \pi x|} \cdot e^{|\cos 2 \pi x|} \cdot \cdot e^{|\cos n \pi x|}$

$f(x)=g(x), h(x)$

Period $f(x)=2(m)$

Reriod $f \quad|\cos x|=\pi$

$y=|\cos x|=|\cos (\pi+x)|=|-\cos x|=|\cos x|=y$

Period of $e^{|\log \pi x|}=\frac{\pi}{\pi}=1$

Period of $e^{\left|(-3)^{2 \pi}\right| x \mid}=\frac{\pi}{2 \pi}=\frac{1}{2}$

Pesiod $f e^{1 \operatorname{los} 3 \pi x}=\frac{\pi}{3 \pi}=\frac{1}{3}$

Period $f e^{|\cos n \pi x|}=\frac{\pi}{n \pi}=\frac{1}{n}$

Perdod of $f(x)=\operatorname{Lcm}\left\{1,1, \frac{1}{2}, \frac{1}{3}, . . \quad \frac{1}{n}\right\}$

$y=\frac{1}{1}=1$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.