The period of the function $f(x) = e^{x -[x]+|cos\, \pi x|+|cos\, 2\pi x|+....+|cos\, n\pi x|}$ (where $[.]$ denotes greatest integer function); is:-

  • A

    $1$

  • B

    $n \pi$

  • C

    $n$

  • D

    $\frac{\pi}{n}$

Similar Questions

Let $f(x) = cos(\sqrt P \,x),$ where $P = [\lambda], ([.]$ is $G.I.F.)$ If the period of $f(x)$ is $\pi$. then

The number of functions $f$, from the set$A=\left\{x \in N: x^{2}-10 x+9 \leq 0\right\}$ to the set $B=\left\{n^{2}: n \in N\right\}$ such that $f(x) \leq(x-3)^{2}+1$, for every $x \in A$, is.

  • [JEE MAIN 2022]

Let $x$ denote the total number of one-one functions from a set $A$ with $3$ elements to a set $B$ with $5$ elements and $y$ denote the total number of one-one functions from the set $A$ to the set $A \times B$. Then ...... .

  • [JEE MAIN 2021]

The range of the function $f(x) = \frac{{\sqrt {1 - {x^2}} }}{{1 + \left| x \right|}}$ is 

Let $S=\{1,2,3,4\}$. Then the number of elements in the set $\{f: S \times S \rightarrow S: f$ is onto and $f(a, b)=f(b, a)$ $\geq a; \forall(a, b) \in S \times S\}$ is

  • [JEE MAIN 2022]