The period of the function $f(x) = e^{x -[x]+|cos\, \pi x|+|cos\, 2\pi x|+....+|cos\, n\pi x|}$ (where $[.]$ denotes greatest integer function); is:-

  • A

    $1$

  • B

    $n \pi$

  • C

    $n$

  • D

    $\frac{\pi}{n}$

Similar Questions

The domain of the function $f(x)=\frac{1}{\sqrt{[x]^2-3[x]-10}}$ is (where $[x]$ denotes the greatest integer less than or equal to $x$ )

  • [JEE MAIN 2023]

Range of ${\sin ^{ - 1\,}}\left( {\frac{{1 + {x^2}}}{{2 + {x^2}}}} \right)$ is 

Let $A$ denote the set of all real numbers $x$ such that $x^3-[x]^3=\left(x-[x]^3\right)$, where $[x]$ is the greatest integer less than or equal to $x$. Then,

  • [KVPY 2020]

If $f(x) = \cos (\log x)$, then $f({x^2})f({y^2}) - \frac{1}{2}\left[ {f\,\left( {\frac{{{x^2}}}{2}} \right) + f\left( {\frac{{{x^2}}}{{{y^2}}}} \right)} \right]$ has the value

Statement $-1$ : The equation $x\, log\, x = 2 - x$ is satisfied by at least one value of $x$ lying between $1$ and $2$

Statement $-2$ : The function $f(x) = x\, log\, x$ is an increasing function in $[1, 2]$ and $g (x) = 2 -x$ is a decreasing function in $[ 1 , 2]$ and the graphs represented by these functions intersect at a point in $[ 1 , 2]$

  • [JEE MAIN 2013]