The graph of the function $y = f(x)$ is symmetrical about the line $x = 2$, then
$f(x) = - f( - x)$
$f(2 + x) = f(2 - x)$
$f(x) = f( - x)$
$f(x + 2) = f(x - 2)$
The domain of the function $f(x) = \frac{{{{\sin }^{ - 1}}(x - 3)}}{{\sqrt {9 - {x^2}} }}$ is
If $y = 3[x] + 1 = 4[x -1] -10$, then $[x + 2y]$ is equal to (where $[.]$ is $G.I.F.$)
Tho damnin of tho finction $\cos ^{-1}\left(\frac{2 \sin ^{-1}\left(\frac{1}{4 x^{2}-1}\right)}{\pi}\right)$ is
Consider the identity function $I _{ N }: N \rightarrow N$ defined as $I _{ N }$ $(x)=x$ $\forall $ $x \in N$ Show that although $I _{ N }$ is onto but $I _{ N }+ I _{ N }:$ $ N \rightarrow N$ defined as $\left(I_{N}+I_{N}\right)(x)=$ $I_{N}(x)+I_{N}(x)$ $=x+x=2 x$ is not onto.
Let $f (x) = a^x (a > 0)$ be written as $f( x) = f_1( x) + f_2( x)$ , where $f_1( x)$ is an even function and $f_2( x)$ is an odd function. Then $f_1( x + y) + f_1( x - y )$ equals