જો $f\left( n \right) = \left[ {\frac{1}{3} + \frac{{3n}}{{100}}} \right]n$ , જ્યાં $[n]$ મહત્તમ પૂર્ણાંક વિધેય હોય તો $\sum\limits_{n = 1}^{56} {f\left( n \right)} $ ની કિમત મેળવો.
$56$
$689$
$1287$
$1399$
વક્ર $y = \frac{|x-x^2|}{x^2-x}$ નો ગ્રાફ નીચેનામાંથી ક્યો છે ?
જો $E = \{ 1,2,3,4\} $ અને $F = \{ 1,2\} $.તો $E$ થી $F$ પરના વ્યાપ્ત વિધેય ની સંખ્યા મેળવો.
જો $P(S)$ એ ગણ $S$ ના બધાજ ઉપગણનો ગણ દર્શાવે છે તો ગણ $S = \{ 1, 2, 3\}$ થી ગણ $P(S)$ પરના પરના એક-એક વિધેયની સંખ્યા મેળવો.
એક શાળાના ધોરણ $X$ ના બધા જ $50$ વિદ્યાર્થીઓનો ગણ $A$ છે.
વિધેય $f: A \rightarrow N$, $'f(x)=$ વિદ્યાર્થી $x$ નો રોલ નંબરદ્વારા વ્યાખ્યાયિત છે. સાબિત કરો કે $f$ એક-એક છે, પરંતુ વ્યાપ્ત નથી.
ધારો કે $f:(1,3) \rightarrow \mathrm{R}$ એ $f(\mathrm{x})=\frac{\mathrm{x}[\mathrm{x}]}{1+\mathrm{x}^{2}},$ મુજબ વિધેય વ્યાખ્યાતિ છે કે જ્યાં $[\mathrm{x}]$ એ મહતમ પૃણાંક વિધેય છે તો વિધેય $f$ નો વિસ્તાર મેળવો.