વિધેય $f:\{1,2,3,4\} \to \{1,2,3,4,5,6\}$ કેટલા મળે કે જેથી $f (1)+ f (2)= f (3)$ થાય.
$60$
$90$
$108$
$126$
જો $f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = 3x,x \ne 0$ અને $S = \left\{ {x \in R:f\left( x \right) = f\left( { - x} \right)} \right\}$;તો $S :$
જો $\phi (x) = {a^x}$, તો ${\{ \phi (p)\} ^3} = . . .$
જો $f(x) = \cos (\log x)$, તો $f(x).f(4) - \frac{1}{2}\left[ {f\left( {\frac{x}{4}} \right) + f(4x)} \right] =$
જો $f\,:\,R \to R$ પર વિધેય $f\left( x \right) = {x^3} + {x^2}f'\left( 1 \right) + xf''\left( 2 \right) + f'''\left( 3 \right)$, $x \in R$ તો $f(2)$ મેળવો.
જો $\sum\limits_{k = 1}^{10} {f\,(a\, + \,k)} \, = \,16\,({2^{10}}\, - \,1),$ કે જ્યાં વિધેય $f$ એ દરેક પ્રાકૃતિક સંખ્યા $x, y$ માટે $f(x + y) = f(x) f(y)$ નું પાલન કરે છે અને $f(1) = 2$ તો પ્રાકૃતિક સંખ્યા $‘ a '$ મેળવો.