10-2. Parabola, Ellipse, Hyperbola
hard

Let $0 < \theta  < \frac{\pi }{2}$. If the eccentricity of the hyperbola $\frac{{{x^2}}}{{{{\cos }^2}\,\theta }} - \frac{{{y^2}}}{{{{\sin }^2}\,\theta }} = 1$ is greater than $2$, then the length of its latus rectum lies in the interval

A

$\left( {3,\infty } \right)$

B

$\left( {\frac{3}{2},2} \right]$

C

$\left( {2,3} \right]$

D

$\left( {1,\frac{3}{2}} \right]$

(JEE MAIN-2019)

Solution

$\frac{{{x^2}}}{{{{\cos }^2}\theta }} – \frac{{{y^2}}}{{{{\sin }^2}\theta }} = 1$

$\because $ $e > 2$        (given)

${e^2} > 4 \Rightarrow 1 + \frac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }} > 4$

$ \Rightarrow 1 + {\tan ^2}\theta  > 4$

$ \Rightarrow {\tan ^2}\theta  > 3$

$\because $ $\theta  \in \left( {\frac{\pi }{3},\frac{\pi }{2}} \right)$

Latus ractum $ = 2\frac{{{{\sin }^2}\theta }}{{\cos \theta }} = 2\tan \theta \sin \theta $

$\because $ for $\theta  \in \left( {\frac{\pi }{3},\frac{\pi }{2}} \right),2\tan \theta \sin \theta $ is increasing

Hence latus rectum $ \in \left( {3,\infty } \right)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.