Let $0 < \theta < \frac{\pi }{2}$. If the eccentricity of the hyperbola $\frac{{{x^2}}}{{{{\cos }^2}\,\theta }} - \frac{{{y^2}}}{{{{\sin }^2}\,\theta }} = 1$ is greater than $2$, then the length of its latus rectum lies in the interval
$\left( {3,\infty } \right)$
$\left( {\frac{3}{2},2} \right]$
$\left( {2,3} \right]$
$\left( {1,\frac{3}{2}} \right]$
If the foci of the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$ coincide with the foci of the hyperbola $\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}},$ then $b^2$ is equal to
Locus of the middle points of the parallel chords with gradient $m$ of the rectangular hyperbola $xy = c^2 $ is
With one focus of the hyperbola $\frac{{{x^2}}}{9}\,\, - \,\,\frac{{{y^2}}}{{16}}\,\, = \,\,1$ as the centre , a circle is drawn which is tangent to the hyperbola with no part of the circle being outside the hyperbola. The radius of the circle is
If the tangent and normal to a rectangular hyperbola $xy = c^2$ at a variable point cut off intercept $a_1, a_2$ on $x-$ axis and $b_1, b_2$ on $y-$ axis, then $(a_1a_2 + b_1b_2)$ is
Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $49 y^{2}-16 x^{2}=784$