Let $A = \left[ {\begin{array}{*{20}{c}}
2&b&1 \\
b&{{b^2} + 1}&b \\
1&b&2
\end{array}} \right]$ where $b > 0$. Then the minimum value of $\frac{{\det \left( A \right)}}{b}$ is
$2\sqrt 3$
$-2\sqrt 3$
$-\sqrt 3$
$\sqrt 3$
The number of solutions of the equations $x + 4y - z = 0,$ $3x - 4y - z = 0,\,x - 3y + z = 0$ is
If the system of equations $x +y + z = 6$ ; $x + 2y + 3z= 10$ ; $x + 2y + \lambda z = 0$ has a unique solution, then $\lambda $ is not equal to
If $A = \left[ {\begin{array}{*{20}{c}}
1&{\sin \,\theta }&1\\
{ - \,\sin \,\theta }&1&{\sin \,\theta }\\
{ - 1}&{ - \,\sin \,\theta }&1
\end{array}} \right];$ then for all $\theta \, \in \,\left( {\frac{{3\pi }}{4},\frac{{5\pi }}{4}} \right),$ det $(A)$ lies in the interval
Let $A = \left[ {\begin{array}{*{20}{c}}5&{5\alpha }&\alpha \\0&\alpha &{5\alpha }\\0&0&5\end{array}} \right]$, If ${\left| A \right|^2} = 25$, then $\left| \alpha \right|$ equals
The system of linear equations $x + y + z = 2$, $2x + y - z = 3,$ $3x + 2y + kz = 4$has a unique solution if